Discrete-time k-positive linear systems

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Automatic Control. IEEE. 2021, 66(1), pp. 399-405. ISSN 0018-9286. eISSN 1558-2523. Available under: doi: 10.1109/TAC.2020.2987285
Zusammenfassung

Positive systems play an important role in systems and control theory and have found many applications in multi-agent systems, neural networks, systems biology, and more. Positive systems map the nonnegative orthant to itself (and also the nonpositive orthant to itself). In other words, they map the set of vectors with zero sign variation to itself. In this note, discrete-time linear systems that map the set of vectors with up to k-1 sign variations to itself are introduced. For the special case k = 1 these reduce to discrete-time positive linear systems. Properties of these systems are analyzed using tools from the theory of sign-regular matrices. In particular, it is shown that almost every solution of such systems converges to the set of vectors with up to k-1 sign variations. It is also shown that these systems induce a positive dynamics of k-dimensional parallelotopes.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690ALSEIDI, Rola, Michael MARGALIOT, Jürgen GARLOFF, 2021. Discrete-time k-positive linear systems. In: IEEE Transactions on Automatic Control. IEEE. 2021, 66(1), pp. 399-405. ISSN 0018-9286. eISSN 1558-2523. Available under: doi: 10.1109/TAC.2020.2987285
BibTex
@article{Alseidi2021Discr-48940.2,
  year={2021},
  doi={10.1109/TAC.2020.2987285},
  title={Discrete-time k-positive linear systems},
  number={1},
  volume={66},
  issn={0018-9286},
  journal={IEEE Transactions on Automatic Control},
  pages={399--405},
  author={Alseidi, Rola and Margaliot, Michael and Garloff, Jürgen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48940.2">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Positive systems play an important role in systems and control theory and have found many applications in multi-agent systems, neural networks, systems biology, and more. Positive systems map the nonnegative orthant to itself (and also the nonpositive orthant to itself). In other words, they map the set of vectors with zero sign variation to itself. In this note, discrete-time linear systems that map the set of vectors with up to k-1 sign variations to itself are introduced. For the special case k = 1 these reduce to discrete-time  positive linear systems. Properties of these systems are analyzed using tools from the theory of sign-regular matrices. In particular, it is shown that almost every solution of such systems converges to the set of vectors with up to k-1 sign variations. It is also shown that these systems induce a positive dynamics of k-dimensional parallelotopes.</dcterms:abstract>
    <dcterms:title>Discrete-time k-positive linear systems</dcterms:title>
    <dcterms:issued>2021</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-20T10:46:00Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Garloff, Jürgen</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Margaliot, Michael</dc:contributor>
    <dc:creator>Alseidi, Rola</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Alseidi, Rola</dc:contributor>
    <dc:creator>Margaliot, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-20T10:46:00Z</dcterms:available>
    <dc:contributor>Garloff, Jürgen</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48940.2"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2021-01-20 10:43:28
2020-03-04 16:02:00
* Ausgewählte Version