Publikation: Shotgun metagenomics of soil invertebrate communities reflects taxonomy, biomass, and reference genome properties
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Metagenomics – shotgun sequencing of all DNA fragments from a community DNA extract – is routinely used to describe the composition, structure, and function of microorganism communities. Advances in DNA sequencing and the availability of genome databases increasingly allow the use of shotgun metagenomics on eukaryotic communities. Metagenomics offers major advances in the recovery of biomass relationships in a sample, in comparison to taxonomic marker gene-based approaches (metabarcoding). However, little is known about the factors which influence metagenomics data from eukaryotic communities, such as differences among organism groups, the properties of reference genomes, and genome assemblies. We evaluated how shotgun metagenomics records composition and biomass in artificial soil invertebrate communities at different sequencing efforts. We generated mock communities of controlled biomass ratios from 28 species from all major soil mesofauna groups: mites, springtails, nematodes, tardigrades, and potworms. We shotgun sequenced these communities and taxonomically assigned them with a database of over 270 soil invertebrate genomes. We recovered over 95% of the species, and observed relatively high false-positive detection rates. We found strong differences in reads assigned to different taxa, with some groups (e.g., springtails) consistently attracting more hits than others (e.g., enchytraeids). Original biomass could be predicted from read counts after considering these taxon-specific differences. Species with larger genomes, and with more complete assemblies, consistently attracted more reads than species with smaller genomes. The GC content of the genome assemblies had no effect on the biomass–read relationships. Results were similar among different sequencing efforts. The results show considerable differences in taxon recovery and taxon specificity of biomass recovery from metagenomic sequence data. The properties of reference genomes and genome assemblies also influence biomass recovery, and they should be considered in metagenomic studies of eukaryotes. We show that low- and high-sequencing efforts yield similar results, suggesting high cost-efficiency of metagenomics for eukaryotic communities. We provide a brief roadmap for investigating factors which influence metagenomics-based eukaryotic community reconstructions. Understanding these factors is timely as accessibility of DNA sequencing and momentum for reference genomes projects show a future where the taxonomic assignment of DNA from any community sample becomes a reality.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHMIDT, Alexandra, Clément SCHNEIDER, Peter DECKER, Karin HOHBERG, Jörg RÖMBKE, Ricarda LEHMITZ, Miklós BÁLINT, 2022. Shotgun metagenomics of soil invertebrate communities reflects taxonomy, biomass, and reference genome properties. In: Ecology and Evolution. Wiley. 2022, 12(6), e8991. eISSN 2045-7758. Available under: doi: 10.1002/ece3.8991BibTex
@article{Schmidt2022-07Shotg-57801, year={2022}, doi={10.1002/ece3.8991}, title={Shotgun metagenomics of soil invertebrate communities reflects taxonomy, biomass, and reference genome properties}, number={6}, volume={12}, journal={Ecology and Evolution}, author={Schmidt, Alexandra and Schneider, Clément and Decker, Peter and Hohberg, Karin and Römbke, Jörg and Lehmitz, Ricarda and Bálint, Miklós}, note={Article Number: e8991} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57801"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57801/1/Schmidt_%202-198cf0kkktkc35.pdf"/> <dc:creator>Decker, Peter</dc:creator> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Schneider, Clément</dc:creator> <dc:creator>Lehmitz, Ricarda</dc:creator> <dc:creator>Bálint, Miklós</dc:creator> <dc:contributor>Decker, Peter</dc:contributor> <dc:contributor>Schneider, Clément</dc:contributor> <dc:creator>Römbke, Jörg</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-17T10:06:40Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57801/1/Schmidt_%202-198cf0kkktkc35.pdf"/> <dc:creator>Hohberg, Karin</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57801"/> <dc:contributor>Römbke, Jörg</dc:contributor> <dc:contributor>Bálint, Miklós</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Lehmitz, Ricarda</dc:contributor> <dc:contributor>Schmidt, Alexandra</dc:contributor> <dc:contributor>Hohberg, Karin</dc:contributor> <dcterms:abstract xml:lang="eng">Metagenomics – shotgun sequencing of all DNA fragments from a community DNA extract – is routinely used to describe the composition, structure, and function of microorganism communities. Advances in DNA sequencing and the availability of genome databases increasingly allow the use of shotgun metagenomics on eukaryotic communities. Metagenomics offers major advances in the recovery of biomass relationships in a sample, in comparison to taxonomic marker gene-based approaches (metabarcoding). However, little is known about the factors which influence metagenomics data from eukaryotic communities, such as differences among organism groups, the properties of reference genomes, and genome assemblies. We evaluated how shotgun metagenomics records composition and biomass in artificial soil invertebrate communities at different sequencing efforts. We generated mock communities of controlled biomass ratios from 28 species from all major soil mesofauna groups: mites, springtails, nematodes, tardigrades, and potworms. We shotgun sequenced these communities and taxonomically assigned them with a database of over 270 soil invertebrate genomes. We recovered over 95% of the species, and observed relatively high false-positive detection rates. We found strong differences in reads assigned to different taxa, with some groups (e.g., springtails) consistently attracting more hits than others (e.g., enchytraeids). Original biomass could be predicted from read counts after considering these taxon-specific differences. Species with larger genomes, and with more complete assemblies, consistently attracted more reads than species with smaller genomes. The GC content of the genome assemblies had no effect on the biomass–read relationships. Results were similar among different sequencing efforts. The results show considerable differences in taxon recovery and taxon specificity of biomass recovery from metagenomic sequence data. The properties of reference genomes and genome assemblies also influence biomass recovery, and they should be considered in metagenomic studies of eukaryotes. We show that low- and high-sequencing efforts yield similar results, suggesting high cost-efficiency of metagenomics for eukaryotic communities. We provide a brief roadmap for investigating factors which influence metagenomics-based eukaryotic community reconstructions. Understanding these factors is timely as accessibility of DNA sequencing and momentum for reference genomes projects show a future where the taxonomic assignment of DNA from any community sample becomes a reality.</dcterms:abstract> <dc:creator>Schmidt, Alexandra</dc:creator> <dcterms:issued>2022-07</dcterms:issued> <dc:rights>Attribution 4.0 International</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-17T10:06:40Z</dc:date> <dcterms:title>Shotgun metagenomics of soil invertebrate communities reflects taxonomy, biomass, and reference genome properties</dcterms:title> </rdf:Description> </rdf:RDF>