Publikation:

A Cluster-Based Outlier Detection Scheme for Multivariate Data

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Jobe, J. Marcus

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of the American Statistical Association. 2015, 110(512), pp. 1543-1551. ISSN 0162-1459. eISSN 1537-274X. Available under: doi: 10.1080/01621459.2014.983231

Zusammenfassung

Detection power of the squared Mahalanobis distance statistic is significantly reduced when several outliers exist within a multivariate data set of interest. To overcome this masking effect, we propose a computer-intensive cluster-based approach that incorporates a reweighted version of Rousseeuw’s minimum covariance determinant method with a multi-step cluster-based algorithm that initially filters out potential masking points. Compared to the most robust procedures, simulation studies show that our new method is better for outlier detection. Additional real data comparisons are given.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Breakdown point; Size and power; Kernel estimator; Bandwidth

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JOBE, J. Marcus, Michael POKOJOVY, 2015. A Cluster-Based Outlier Detection Scheme for Multivariate Data. In: Journal of the American Statistical Association. 2015, 110(512), pp. 1543-1551. ISSN 0162-1459. eISSN 1537-274X. Available under: doi: 10.1080/01621459.2014.983231
BibTex
@article{Jobe2015Clust-29413,
  year={2015},
  doi={10.1080/01621459.2014.983231},
  title={A Cluster-Based Outlier Detection Scheme for Multivariate Data},
  number={512},
  volume={110},
  issn={0162-1459},
  journal={Journal of the American Statistical Association},
  pages={1543--1551},
  author={Jobe, J. Marcus and Pokojovy, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29413">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Pokojovy, Michael</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29413"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-12-10T12:56:04Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Jobe, J. Marcus</dc:creator>
    <dcterms:title>A Cluster-Based Outlier Detection Scheme for Multivariate Data</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-12-10T12:56:04Z</dcterms:available>
    <dc:creator>Pokojovy, Michael</dc:creator>
    <dcterms:abstract xml:lang="eng">Detection power of the squared Mahalanobis distance statistic is significantly reduced when several outliers exist within a multivariate data set of interest. To overcome this masking effect, we propose a computer-intensive cluster-based approach that incorporates a reweighted version of Rousseeuw’s minimum covariance determinant method with a multi-step cluster-based algorithm that initially filters out potential masking points. Compared to the most robust procedures, simulation studies show that our new method is better for outlier detection. Additional real data comparisons are given.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Jobe, J. Marcus</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen