Publikation: Phase separation in confined geometries : Solving the Cahn–Hilliard equation with generic boundary conditions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We apply implicit numerical methods to solve the Cahn–Hilliard equation for confined systems. Generic boundary conditions for hard walls are considered, as they are derived from physical principles. Based on a detailed stability analysis an automatic time step control could be implemented, which makes it possible to explore the demixing kinetics of two thermodynamically stable phases over many orders in time with good space resolution. The power of the method is demonstrated by investigating spinodal decomposition in two-dimensional systems. At early times of the decomposition process the numerical results are in excellent agreement with analytical predictions based on the linearized equations. Due to the efficiency of the variable time step procedure it is possible to monitor the process until a stable equilibrium is reached.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KENZLER, Rainer, Frank EURICH, Philipp MAASS, Bernd RINN, Johannes SCHROPP, Erich BOHL, Wolfgang DIETERICH, 2001. Phase separation in confined geometries : Solving the Cahn–Hilliard equation with generic boundary conditions. In: Computer Physics Communications. 2001, 133(2-3), pp. 139-157. ISSN 0010-4655. eISSN 1879-2944. Available under: doi: 10.1016/S0010-4655(00)00159-4BibTex
@article{Kenzler2001-01Phase-43194, year={2001}, doi={10.1016/S0010-4655(00)00159-4}, title={Phase separation in confined geometries : Solving the Cahn–Hilliard equation with generic boundary conditions}, number={2-3}, volume={133}, issn={0010-4655}, journal={Computer Physics Communications}, pages={139--157}, author={Kenzler, Rainer and Eurich, Frank and Maass, Philipp and Rinn, Bernd and Schropp, Johannes and Bohl, Erich and Dieterich, Wolfgang} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43194"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-07T09:16:37Z</dcterms:available> <dc:contributor>Kenzler, Rainer</dc:contributor> <dc:contributor>Dieterich, Wolfgang</dc:contributor> <dc:contributor>Bohl, Erich</dc:contributor> <dc:creator>Bohl, Erich</dc:creator> <dc:contributor>Maass, Philipp</dc:contributor> <dc:creator>Schropp, Johannes</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We apply implicit numerical methods to solve the Cahn–Hilliard equation for confined systems. Generic boundary conditions for hard walls are considered, as they are derived from physical principles. Based on a detailed stability analysis an automatic time step control could be implemented, which makes it possible to explore the demixing kinetics of two thermodynamically stable phases over many orders in time with good space resolution. The power of the method is demonstrated by investigating spinodal decomposition in two-dimensional systems. At early times of the decomposition process the numerical results are in excellent agreement with analytical predictions based on the linearized equations. Due to the efficiency of the variable time step procedure it is possible to monitor the process until a stable equilibrium is reached.</dcterms:abstract> <dc:creator>Maass, Philipp</dc:creator> <dc:creator>Kenzler, Rainer</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2001-01</dcterms:issued> <dc:contributor>Rinn, Bernd</dc:contributor> <dc:creator>Dieterich, Wolfgang</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:language>eng</dc:language> <dc:creator>Rinn, Bernd</dc:creator> <dc:contributor>Eurich, Frank</dc:contributor> <dc:creator>Eurich, Frank</dc:creator> <dcterms:title>Phase separation in confined geometries : Solving the Cahn–Hilliard equation with generic boundary conditions</dcterms:title> <dc:contributor>Schropp, Johannes</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43194"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-07T09:16:37Z</dc:date> </rdf:Description> </rdf:RDF>