Phase separation in confined geometries : Solving the Cahn–Hilliard equation with generic boundary conditions

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2001
Autor:innen
Kenzler, Rainer
Eurich, Frank
Maass, Philipp
Rinn, Bernd
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Computer Physics Communications. 2001, 133(2-3), pp. 139-157. ISSN 0010-4655. eISSN 1879-2944. Available under: doi: 10.1016/S0010-4655(00)00159-4
Zusammenfassung

We apply implicit numerical methods to solve the Cahn–Hilliard equation for confined systems. Generic boundary conditions for hard walls are considered, as they are derived from physical principles. Based on a detailed stability analysis an automatic time step control could be implemented, which makes it possible to explore the demixing kinetics of two thermodynamically stable phases over many orders in time with good space resolution. The power of the method is demonstrated by investigating spinodal decomposition in two-dimensional systems. At early times of the decomposition process the numerical results are in excellent agreement with analytical predictions based on the linearized equations. Due to the efficiency of the variable time step procedure it is possible to monitor the process until a stable equilibrium is reached.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Partial differential equations; Initial value and time-dependent initial-boundary value problems; Method of lines; Time-dependent statistical mechanics (dynamics and nonequilibrium); Dynamic and nonequilibrium phase transitions (general)
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KENZLER, Rainer, Frank EURICH, Philipp MAASS, Bernd RINN, Johannes SCHROPP, Erich BOHL, Wolfgang DIETERICH, 2001. Phase separation in confined geometries : Solving the Cahn–Hilliard equation with generic boundary conditions. In: Computer Physics Communications. 2001, 133(2-3), pp. 139-157. ISSN 0010-4655. eISSN 1879-2944. Available under: doi: 10.1016/S0010-4655(00)00159-4
BibTex
@article{Kenzler2001-01Phase-43194,
  year={2001},
  doi={10.1016/S0010-4655(00)00159-4},
  title={Phase separation in confined geometries : Solving the Cahn–Hilliard equation with generic boundary conditions},
  number={2-3},
  volume={133},
  issn={0010-4655},
  journal={Computer Physics Communications},
  pages={139--157},
  author={Kenzler, Rainer and Eurich, Frank and Maass, Philipp and Rinn, Bernd and Schropp, Johannes and Bohl, Erich and Dieterich, Wolfgang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43194">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-07T09:16:37Z</dcterms:available>
    <dc:contributor>Kenzler, Rainer</dc:contributor>
    <dc:contributor>Dieterich, Wolfgang</dc:contributor>
    <dc:contributor>Bohl, Erich</dc:contributor>
    <dc:creator>Bohl, Erich</dc:creator>
    <dc:contributor>Maass, Philipp</dc:contributor>
    <dc:creator>Schropp, Johannes</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">We apply implicit numerical methods to solve the Cahn–Hilliard equation for confined systems. Generic boundary conditions for hard walls are considered, as they are derived from physical principles. Based on a detailed stability analysis an automatic time step control could be implemented, which makes it possible to explore the demixing kinetics of two thermodynamically stable phases over many orders in time with good space resolution. The power of the method is demonstrated by investigating spinodal decomposition in two-dimensional systems. At early times of the decomposition process the numerical results are in excellent agreement with analytical predictions based on the linearized equations. Due to the efficiency of the variable time step procedure it is possible to monitor the process until a stable equilibrium is reached.</dcterms:abstract>
    <dc:creator>Maass, Philipp</dc:creator>
    <dc:creator>Kenzler, Rainer</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2001-01</dcterms:issued>
    <dc:contributor>Rinn, Bernd</dc:contributor>
    <dc:creator>Dieterich, Wolfgang</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:language>eng</dc:language>
    <dc:creator>Rinn, Bernd</dc:creator>
    <dc:contributor>Eurich, Frank</dc:contributor>
    <dc:creator>Eurich, Frank</dc:creator>
    <dcterms:title>Phase separation in confined geometries : Solving the Cahn–Hilliard equation with generic boundary conditions</dcterms:title>
    <dc:contributor>Schropp, Johannes</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43194"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-07T09:16:37Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja