Publikation: Natural heavy-hole flopping mode qubit in germanium
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Flopping mode qubits in double quantum dots (DQDs) allow for coherent spin-photon hybridization and fast qubit gates when coupled to either an alternating external or a quantized cavity electric field. To achieve this, however, electronic systems rely on synthetic spin-orbit interaction (SOI) by means of a magnetic field gradient as a coupling mechanism. Here we theoretically show that this challenging experimental setup can be avoided in heavy-hole (HH) systems in germanium (Ge) by utilizing the sizeable cubic Rashba SOI. We argue that the resulting natural flopping mode qubit possesses highly tunable spin coupling strengths that allow for one- and two-qubit gate times in the nanosecond range when the system is designed to function in an optimal operation mode which we quantify.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MUTTER, Philipp M., Guido BURKARD, 2021. Natural heavy-hole flopping mode qubit in germanium. In: Physical Review Research. American Physical Society. 2021, 3(1), 013194. eISSN 2643-1564. Available under: doi: 10.1103/PhysRevResearch.3.013194BibTex
@article{Mutter2021Natur-53398, year={2021}, doi={10.1103/PhysRevResearch.3.013194}, title={Natural heavy-hole flopping mode qubit in germanium}, number={1}, volume={3}, journal={Physical Review Research}, author={Mutter, Philipp M. and Burkard, Guido}, note={Article Number: 013194} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53398"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53398/1/Mutter_2-19g4jtdaxok4q5.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53398/1/Mutter_2-19g4jtdaxok4q5.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-16T13:43:32Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Burkard, Guido</dc:contributor> <dc:creator>Burkard, Guido</dc:creator> <dc:contributor>Mutter, Philipp M.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-16T13:43:32Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Mutter, Philipp M.</dc:creator> <dcterms:abstract xml:lang="eng">Flopping mode qubits in double quantum dots (DQDs) allow for coherent spin-photon hybridization and fast qubit gates when coupled to either an alternating external or a quantized cavity electric field. To achieve this, however, electronic systems rely on synthetic spin-orbit interaction (SOI) by means of a magnetic field gradient as a coupling mechanism. Here we theoretically show that this challenging experimental setup can be avoided in heavy-hole (HH) systems in germanium (Ge) by utilizing the sizeable cubic Rashba SOI. We argue that the resulting natural flopping mode qubit possesses highly tunable spin coupling strengths that allow for one- and two-qubit gate times in the nanosecond range when the system is designed to function in an optimal operation mode which we quantify.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53398"/> <dcterms:title>Natural heavy-hole flopping mode qubit in germanium</dcterms:title> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:issued>2021</dcterms:issued> </rdf:Description> </rdf:RDF>