Publikation:

Mapping job fitness and skill coherence into wages : an economic complexity analysis

Lade...
Vorschaubild

Dateien

Aufiero_2-19nfu9v7eik7d2.pdf
Aufiero_2-19nfu9v7eik7d2.pdfGröße: 5.95 MBDownloads: 8

Datum

2024

Autor:innen

Aufiero, Sabrina
Sbardella, Angelica
Zaccaria, Andrea

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 20223W2JKJ

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Scientific Reports. Springer. 2024, 14(1), 11752. eISSN 2045-2322. Verfügbar unter: doi: 10.1038/s41598-024-61448-x

Zusammenfassung

Leveraging the discrete skill and knowledge worker requirements of each occupation provided by O*NET, our empirical approach employs network-based tools from the Economic Complexity framework to characterize the US occupational network. This approach provides insights into the interplay between wages and the complexity or relatedness of the skill sets within each occupation, complementing conventional human capital frameworks. Our empirical strategy is threefold. First, we construct the Job and Skill Progression Networks, where nodes represent jobs (skills) and a link between two jobs (skills) indicates statistically significant co-occurrence of skills required to carry out those two jobs, that can be useful tools to identify job-switching paths and skill complementarities Second, by harnessing the Fitness and Complexity algorithm, we define a data-driven skill-based complexity measure of jobs that positively maps, but with interesting deviations, into wages and in the bottom–up and broad abstract/manual and routine/non-routine job characterisations, however providing a continuous and endogenous metric to assess the degree of complexity of each occupational skill-set. Third, building on relatedness and corporate coherence metrics, we introduce a measure of each job’s skill coherence, that negatively maps into wages. Our findings may inform policymakers and employers on designing more effective labour market policies and training schemes, that, rather than fostering hyper-specialization, should favor the acquisition of complex and “uncoherent” skill sets, enabling workers to more easily move throughout the job and skill progression networks and make informed career choices decisions while unlocking higher wage opportunities.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AUFIERO, Sabrina, Giordano DE MARZO, Angelica SBARDELLA, Andrea ZACCARIA, 2024. Mapping job fitness and skill coherence into wages : an economic complexity analysis. In: Scientific Reports. Springer. 2024, 14(1), 11752. eISSN 2045-2322. Verfügbar unter: doi: 10.1038/s41598-024-61448-x
BibTex
@article{Aufiero2024-05-23Mappi-71598,
  year={2024},
  doi={10.1038/s41598-024-61448-x},
  title={Mapping job fitness and skill coherence into wages : an economic complexity analysis},
  number={1},
  volume={14},
  journal={Scientific Reports},
  author={Aufiero, Sabrina and de Marzo, Giordano and Sbardella, Angelica and Zaccaria, Andrea},
  note={Article Number: 11752}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71598">
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Aufiero, Sabrina</dc:creator>
    <dcterms:issued>2024-05-23</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-06T12:17:13Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71598"/>
    <dcterms:abstract>Leveraging the discrete skill and knowledge worker requirements of each occupation provided by O*NET, our empirical approach employs network-based tools from the Economic Complexity framework to characterize the US occupational network. This approach provides insights into the interplay between wages and the complexity or relatedness of the skill sets within each occupation, complementing conventional human capital frameworks. Our empirical strategy is threefold. First, we construct the Job and Skill Progression Networks, where nodes represent jobs (skills) and a link between two jobs (skills) indicates statistically significant co-occurrence of skills required to carry out those two jobs, that can be useful tools to identify job-switching paths and skill complementarities Second, by harnessing the Fitness and Complexity algorithm, we define a data-driven skill-based complexity measure of jobs that positively maps, but with interesting deviations, into wages and in the bottom–up and broad abstract/manual and routine/non-routine job characterisations, however providing a continuous and endogenous metric to assess the degree of complexity of each occupational skill-set. Third, building on relatedness and corporate coherence metrics, we introduce a measure of each job’s skill coherence, that negatively maps into wages. Our findings may inform policymakers and employers on designing more effective labour market policies and training schemes, that, rather than fostering hyper-specialization, should favor the acquisition of complex and “uncoherent” skill sets, enabling workers to more easily move throughout the job and skill progression networks and make informed career choices decisions while unlocking higher wage opportunities.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Mapping job fitness and skill coherence into wages : an economic complexity analysis</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Sbardella, Angelica</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71598/4/Aufiero_2-19nfu9v7eik7d2.pdf"/>
    <dc:creator>de Marzo, Giordano</dc:creator>
    <dc:creator>Zaccaria, Andrea</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-06T12:17:13Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Zaccaria, Andrea</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Aufiero, Sabrina</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Sbardella, Angelica</dc:contributor>
    <dc:contributor>de Marzo, Giordano</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71598/4/Aufiero_2-19nfu9v7eik7d2.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen