Publikation:

A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs (Extended Abstract)

Lade...
Vorschaubild

Dateien

bw_ltaad_97.pdf
bw_ltaad_97.pdfGröße: 261.87 KBDownloads: 242

Datum

1997

Autor:innen

Wagner, Dorothea

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BURKARD, Rainer, ed.. Algorithms - ESA '97 : 5th annual European symposium, Graz, Austria, September 15 - 17, 1997 ; proceedings. Berlin [u.a.]: Springer, 1997, pp. 64-77. Lecture notes in computer science. 1284. ISBN 3-540-63397-9

Zusammenfassung

Given a graph G = (V, E) and two vertices s, t belong to V, s unequal to t, the Menger problem is to find a maximum number of disjoint paths connecting s and t. Depending on whether the input graph is directed or not, and what kind of disjointness criterion is demanded, this general formulation is specialized to the directed or undirected vertex, and the edge or arc disjoint Menger problem, respectively. For planar graphs the edge disjoint Menger problem has been solved to optimality [W2], while the fastest algorithm for the arc disjoint version is Weihe s general maximum flow algorithm for planar networks [W1], which has running time O (abs(V) log abs(V)). Here we present a linear time, i.e., asymptotically optimal, algorithm for the arc disjoint version in planar directed graphs.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRANDES, Ulrik, Dorothea WAGNER, 1997. A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs (Extended Abstract). In: BURKARD, Rainer, ed.. Algorithms - ESA '97 : 5th annual European symposium, Graz, Austria, September 15 - 17, 1997 ; proceedings. Berlin [u.a.]: Springer, 1997, pp. 64-77. Lecture notes in computer science. 1284. ISBN 3-540-63397-9
BibTex
@inproceedings{Brandes1997Linea-5701,
  year={1997},
  title={A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs (Extended Abstract)},
  number={1284},
  isbn={3-540-63397-9},
  publisher={Springer},
  address={Berlin [u.a.]},
  series={Lecture notes in computer science},
  booktitle={Algorithms - ESA '97 : 5th annual European symposium, Graz, Austria, September 15 - 17, 1997 ; proceedings},
  pages={64--77},
  editor={Burkard, Rainer},
  author={Brandes, Ulrik and Wagner, Dorothea}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5701">
    <dcterms:abstract xml:lang="eng">Given a graph G = (V, E) and two vertices s, t belong to V, s unequal to t, the Menger problem is to find a maximum number of disjoint paths connecting s and t. Depending on whether the input graph is directed or not, and what kind of disjointness criterion is demanded, this general formulation is specialized to the directed or undirected vertex, and the edge or arc disjoint Menger problem, respectively. For planar graphs the edge disjoint Menger problem has been solved to optimality [W2], while the fastest algorithm for the arc disjoint version is Weihe s general maximum flow algorithm for planar networks [W1], which has running time O (abs(V) log abs(V)). Here we present a linear time, i.e., asymptotically optimal, algorithm for the arc disjoint version in planar directed graphs.</dcterms:abstract>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs (Extended Abstract)</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Wagner, Dorothea</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5701/1/bw_ltaad_97.pdf"/>
    <dcterms:bibliographicCitation>First publ. in: Proceedings of the 5th European Symposium Algorithms (ESA ´97) (LNCS 1284), 1997, pp. 64-77</dcterms:bibliographicCitation>
    <dcterms:issued>1997</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5701"/>
    <dc:contributor>Wagner, Dorothea</dc:contributor>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:27Z</dcterms:available>
    <dc:format>application/pdf</dc:format>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:27Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5701/1/bw_ltaad_97.pdf"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen