Publikation: Measures and Integrals in Conditional Set Theory
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Set-Valued and Variational Analysis. 2018, 26(4), pp. 947-973. ISSN 1877-0533. eISSN 1877-0541. Available under: doi: 10.1007/s11228-018-0478-3
Zusammenfassung
The aim of this article is to establish basic results in a conditional measure theory. The results are applied to prove that arbitrary kernels and conditional distributions are represented by measures in a conditional set theory. In particular, this extends the usual representation results for separable spaces.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Conditional set theory, Conditional measure theory, Vector-valued measure, Kernel, Conditional distribution
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
JAMNESHAN, Asgar, Michael KUPPER, Martin STRECKFUSS, 2018. Measures and Integrals in Conditional Set Theory. In: Set-Valued and Variational Analysis. 2018, 26(4), pp. 947-973. ISSN 1877-0533. eISSN 1877-0541. Available under: doi: 10.1007/s11228-018-0478-3BibTex
@article{Jamneshan2018-12Measu-44446, year={2018}, doi={10.1007/s11228-018-0478-3}, title={Measures and Integrals in Conditional Set Theory}, number={4}, volume={26}, issn={1877-0533}, journal={Set-Valued and Variational Analysis}, pages={947--973}, author={Jamneshan, Asgar and Kupper, Michael and Streckfuß, Martin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44446"> <dc:creator>Jamneshan, Asgar</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">The aim of this article is to establish basic results in a conditional measure theory. The results are applied to prove that arbitrary kernels and conditional distributions are represented by measures in a conditional set theory. In particular, this extends the usual representation results for separable spaces.</dcterms:abstract> <dc:contributor>Kupper, Michael</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Kupper, Michael</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-08T13:08:06Z</dc:date> <dcterms:title>Measures and Integrals in Conditional Set Theory</dcterms:title> <dc:contributor>Jamneshan, Asgar</dc:contributor> <dc:creator>Streckfuß, Martin</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-08T13:08:06Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2018-12</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44446"/> <dc:language>eng</dc:language> <dc:contributor>Streckfuß, Martin</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt