Publikation:

Population‐level inference for home‐range areas

Lade...
Vorschaubild

Dateien

Fleming_2-1a5t982alb80a7.pdf
Fleming_2-1a5t982alb80a7.pdfGröße: 4.65 MBDownloads: 311

Datum

2022

Autor:innen

Fleming, Christen H.
Deznabi, Iman
Hirsch, Ben T.
Medici, E. Patricia
Noonan, Michael J.
Kays, Roland
Fagan, William F.
Sheldon, Daniel
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Methods in Ecology and Evolution. Wiley-Blackwell. 2022, 13(5), pp. 1027-1041. ISSN 2041-210X. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.13815

Zusammenfassung

Home-range estimates are a common product of animal tracking data, as each range represents the area needed by a given individual. Population-level inference of home-range areas—where multiple individual home ranges are considered to be sampled from a population—is also important to evaluate changes over time, space or covariates such as habitat quality or fragmentation, and for comparative analyses of species averages. Population-level home-range parameters have traditionally been estimated by first assuming that the input tracking data were sampled independently when calculating home ranges via conventional kernel density estimation (KDE) or minimal convex polygon (MCP) methods, and then assuming that those individual home ranges were measured exactly when calculating the population-level estimates. This conventional approach does not account for the temporal autocorrelation that is inherent in modern tracking data, nor for the uncertainties of each individual home-range estimate, which are often large and heterogeneous. Here, we introduce a statistically and computationally efficient framework for the population-level analysis of home-range areas, based on autocorrelated kernel density estimation (AKDE), that can account for variable temporal autocorrelation and estimation uncertainty. We apply our method to empirical examples on lowland tapir Tapirus terrestris, kinkajou Potos flavus, white-nosed coati Nasua narica, white-faced capuchin monkey Cebus capucinus and spider monkey Ateles geoffroyi, and quantify differences between species, environments and sexes. Our approach allows researchers to more accurately compare different populations with different movement behaviours or sampling schedules while retaining statistical precision and power when individual home-range uncertainties vary. Finally, we emphasize the estimation of effect sizes when comparing populations, rather than mere significance tests.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FLEMING, Christen H., Iman DEZNABI, Shauhin ALAVI, Margaret C. CROFOOT, Ben T. HIRSCH, E. Patricia MEDICI, Michael J. NOONAN, Roland KAYS, William F. FAGAN, Daniel SHELDON, 2022. Population‐level inference for home‐range areas. In: Methods in Ecology and Evolution. Wiley-Blackwell. 2022, 13(5), pp. 1027-1041. ISSN 2041-210X. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.13815
BibTex
@article{Fleming2022-05Popul-57113,
  year={2022},
  doi={10.1111/2041-210X.13815},
  title={Population‐level inference for home‐range areas},
  number={5},
  volume={13},
  issn={2041-210X},
  journal={Methods in Ecology and Evolution},
  pages={1027--1041},
  author={Fleming, Christen H. and Deznabi, Iman and Alavi, Shauhin and Crofoot, Margaret C. and Hirsch, Ben T. and Medici, E. Patricia and Noonan, Michael J. and Kays, Roland and Fagan, William F. and Sheldon, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57113">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Fagan, William F.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57113"/>
    <dc:contributor>Alavi, Shauhin</dc:contributor>
    <dc:creator>Kays, Roland</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57113/1/Fleming_2-1a5t982alb80a7.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-31T08:09:33Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57113/1/Fleming_2-1a5t982alb80a7.pdf"/>
    <dc:contributor>Noonan, Michael J.</dc:contributor>
    <dc:creator>Sheldon, Daniel</dc:creator>
    <dc:contributor>Crofoot, Margaret C.</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:title>Population‐level inference for home‐range areas</dcterms:title>
    <dc:creator>Deznabi, Iman</dc:creator>
    <dc:contributor>Sheldon, Daniel</dc:contributor>
    <dc:creator>Noonan, Michael J.</dc:creator>
    <dc:contributor>Deznabi, Iman</dc:contributor>
    <dcterms:abstract xml:lang="eng">Home-range estimates are a common product of animal tracking data, as each range represents the area needed by a given individual. Population-level inference of home-range areas—where multiple individual home ranges are considered to be sampled from a population—is also important to evaluate changes over time, space or covariates such as habitat quality or fragmentation, and for comparative analyses of species averages. Population-level home-range parameters have traditionally been estimated by first assuming that the input tracking data were sampled independently when calculating home ranges via conventional kernel density estimation (KDE) or minimal convex polygon (MCP) methods, and then assuming that those individual home ranges were measured exactly when calculating the population-level estimates. This conventional approach does not account for the temporal autocorrelation that is inherent in modern tracking data, nor for the uncertainties of each individual home-range estimate, which are often large and heterogeneous. Here, we introduce a statistically and computationally efficient framework for the population-level analysis of home-range areas, based on autocorrelated kernel density estimation (AKDE), that can account for variable temporal autocorrelation and estimation uncertainty. We apply our method to empirical examples on lowland tapir Tapirus terrestris, kinkajou Potos flavus, white-nosed coati Nasua narica, white-faced capuchin monkey Cebus capucinus and spider monkey Ateles geoffroyi, and quantify differences between species, environments and sexes. Our approach allows researchers to more accurately compare different populations with different movement behaviours or sampling schedules while retaining statistical precision and power when individual home-range uncertainties vary. Finally, we emphasize the estimation of effect sizes when comparing populations, rather than mere significance tests.</dcterms:abstract>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Kays, Roland</dc:contributor>
    <dc:creator>Fagan, William F.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Medici, E. Patricia</dc:creator>
    <dc:creator>Alavi, Shauhin</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Hirsch, Ben T.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-31T08:09:33Z</dc:date>
    <dcterms:issued>2022-05</dcterms:issued>
    <dc:contributor>Hirsch, Ben T.</dc:contributor>
    <dc:contributor>Medici, E. Patricia</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Crofoot, Margaret C.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fleming, Christen H.</dc:creator>
    <dc:contributor>Fleming, Christen H.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen