Publikation:

Neuro-Symbolic Discovery of Markov Population Processes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Bortolussi, Luca
Cairoli, Francesca

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): EXC 2117 – 422037984
European Union (EU): ECS 00000043

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

PAPPAS, George, Hrsg., Pradeep RAVIKUMAR, Hrsg., Sanjit A. SESHIA, Hrsg.. Proceedings of the 2nd International Conference on Neuro-symbolic Systems. Maastricht: MLResearchPress, 2025, S. 396-408. Proceedings of Machine Learning Research. 288. eISSN 2640-3498

Zusammenfassung

Markov population processes (MPPs) are the natural modeling choice in various application domains where multiple interacting entities evolve stochastically over time, including biology, queueing theory, finance, and robotics. Motivated by real-world scenarios where time-series data for MPP models is increasingly available, we here employ a neuro-symbolic approach for discovering explanations of such data in terms of local, agent-to-agent interactions. Concretely, we assume that equidistant time-series measurements of a Markov population chain are given. Then, we propose how to automatically learn the explanatory models written in form of Chemical Reaction Networks (CRNs). Our approach is to use a symbolic representation of a CRN in form of a weighted bipartite graph, and to employ a graph-based Variational Autoencoder (VAE) to jointly infer both the interactions and the accompanying kinetic parameters. We demonstrate our proposed framework over three simple case studies. Our contribution represents a proof-of-concept that interpretable models of complex dynamical systems can be discovered in a fully automated and data-driven fashion, and it is applicable both in scenarios where data is available via experiments, or when it is generated by a black-box simulator

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Chemical Reaction Networks, Variational Autoencoders, Graph Neural Networks

Konferenz

2nd International Conference on Neuro-symbolic Systems (NeuS), 28. Mai 2025 - 30. Mai 2025, Philadelphia, Pennsylvania, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BORTOLUSSI, Luca, Francesca CAIROLI, Julia KLEIN, Tatjana PETROV, 2025. Neuro-Symbolic Discovery of Markov Population Processes. 2nd International Conference on Neuro-symbolic Systems (NeuS). Philadelphia, Pennsylvania, USA, 28. Mai 2025 - 30. Mai 2025. In: PAPPAS, George, Hrsg., Pradeep RAVIKUMAR, Hrsg., Sanjit A. SESHIA, Hrsg.. Proceedings of the 2nd International Conference on Neuro-symbolic Systems. Maastricht: MLResearchPress, 2025, S. 396-408. Proceedings of Machine Learning Research. 288. eISSN 2640-3498
BibTex
@inproceedings{Bortolussi2025Neuro-74546,
  title={Neuro-Symbolic Discovery of Markov Population Processes},
  url={https://proceedings.mlr.press/v288/bortolussi25a},
  year={2025},
  number={288},
  address={Maastricht},
  publisher={MLResearchPress},
  series={Proceedings of Machine Learning Research},
  booktitle={Proceedings of the 2nd International Conference on Neuro-symbolic Systems},
  pages={396--408},
  editor={Pappas, George and Ravikumar, Pradeep and Seshia, Sanjit A.},
  author={Bortolussi, Luca and Cairoli, Francesca and Klein, Julia and Petrov, Tatjana}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74546">
    <dc:creator>Petrov, Tatjana</dc:creator>
    <dc:contributor>Klein, Julia</dc:contributor>
    <dcterms:abstract>Markov population processes (MPPs) are the natural modeling choice in various application domains where multiple interacting entities evolve stochastically over time, including biology, queueing theory, finance, and robotics. Motivated by real-world scenarios where time-series data for MPP models is increasingly available, we here employ a neuro-symbolic approach for discovering explanations of such data in terms of local, agent-to-agent interactions. Concretely, we assume that equidistant time-series measurements of a Markov population chain are given. Then, we propose how to automatically learn the explanatory models written in form of Chemical Reaction Networks (CRNs). Our approach is to use a symbolic representation of a CRN in form of a weighted bipartite graph, and to employ a graph-based Variational Autoencoder (VAE) to jointly infer both the interactions and the accompanying kinetic parameters. We demonstrate our proposed framework over three simple case studies. Our contribution represents a proof-of-concept that interpretable models of complex dynamical systems can be discovered in a fully automated and data-driven fashion, and it is applicable both in scenarios where data is available via experiments, or when it is generated by a black-box simulator</dcterms:abstract>
    <dcterms:title>Neuro-Symbolic Discovery of Markov Population Processes</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-09-15T14:57:55Z</dcterms:available>
    <dc:creator>Cairoli, Francesca</dc:creator>
    <dcterms:issued>2025</dcterms:issued>
    <dc:contributor>Cairoli, Francesca</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Bortolussi, Luca</dc:contributor>
    <dc:creator>Bortolussi, Luca</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-09-15T14:57:55Z</dc:date>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <dc:creator>Klein, Julia</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74546"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2025-06-24

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen