Publikation: Neuro-Symbolic Discovery of Markov Population Processes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): ECS 00000043
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Markov population processes (MPPs) are the natural modeling choice in various application domains where multiple interacting entities evolve stochastically over time, including biology, queueing theory, finance, and robotics. Motivated by real-world scenarios where time-series data for MPP models is increasingly available, we here employ a neuro-symbolic approach for discovering explanations of such data in terms of local, agent-to-agent interactions. Concretely, we assume that equidistant time-series measurements of a Markov population chain are given. Then, we propose how to automatically learn the explanatory models written in form of Chemical Reaction Networks (CRNs). Our approach is to use a symbolic representation of a CRN in form of a weighted bipartite graph, and to employ a graph-based Variational Autoencoder (VAE) to jointly infer both the interactions and the accompanying kinetic parameters. We demonstrate our proposed framework over three simple case studies. Our contribution represents a proof-of-concept that interpretable models of complex dynamical systems can be discovered in a fully automated and data-driven fashion, and it is applicable both in scenarios where data is available via experiments, or when it is generated by a black-box simulator
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BORTOLUSSI, Luca, Francesca CAIROLI, Julia KLEIN, Tatjana PETROV, 2025. Neuro-Symbolic Discovery of Markov Population Processes. 2nd International Conference on Neuro-symbolic Systems (NeuS). Philadelphia, Pennsylvania, USA, 28. Mai 2025 - 30. Mai 2025. In: PAPPAS, George, Hrsg., Pradeep RAVIKUMAR, Hrsg., Sanjit A. SESHIA, Hrsg.. Proceedings of the 2nd International Conference on Neuro-symbolic Systems. Maastricht: MLResearchPress, 2025, S. 396-408. Proceedings of Machine Learning Research. 288. eISSN 2640-3498BibTex
@inproceedings{Bortolussi2025Neuro-74546,
title={Neuro-Symbolic Discovery of Markov Population Processes},
url={https://proceedings.mlr.press/v288/bortolussi25a},
year={2025},
number={288},
address={Maastricht},
publisher={MLResearchPress},
series={Proceedings of Machine Learning Research},
booktitle={Proceedings of the 2nd International Conference on Neuro-symbolic Systems},
pages={396--408},
editor={Pappas, George and Ravikumar, Pradeep and Seshia, Sanjit A.},
author={Bortolussi, Luca and Cairoli, Francesca and Klein, Julia and Petrov, Tatjana}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74546">
<dc:creator>Petrov, Tatjana</dc:creator>
<dc:contributor>Klein, Julia</dc:contributor>
<dcterms:abstract>Markov population processes (MPPs) are the natural modeling choice in various application domains where multiple interacting entities evolve stochastically over time, including biology, queueing theory, finance, and robotics. Motivated by real-world scenarios where time-series data for MPP models is increasingly available, we here employ a neuro-symbolic approach for discovering explanations of such data in terms of local, agent-to-agent interactions. Concretely, we assume that equidistant time-series measurements of a Markov population chain are given. Then, we propose how to automatically learn the explanatory models written in form of Chemical Reaction Networks (CRNs). Our approach is to use a symbolic representation of a CRN in form of a weighted bipartite graph, and to employ a graph-based Variational Autoencoder (VAE) to jointly infer both the interactions and the accompanying kinetic parameters. We demonstrate our proposed framework over three simple case studies. Our contribution represents a proof-of-concept that interpretable models of complex dynamical systems can be discovered in a fully automated and data-driven fashion, and it is applicable both in scenarios where data is available via experiments, or when it is generated by a black-box simulator</dcterms:abstract>
<dcterms:title>Neuro-Symbolic Discovery of Markov Population Processes</dcterms:title>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-09-15T14:57:55Z</dcterms:available>
<dc:creator>Cairoli, Francesca</dc:creator>
<dcterms:issued>2025</dcterms:issued>
<dc:contributor>Cairoli, Francesca</dc:contributor>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:contributor>Bortolussi, Luca</dc:contributor>
<dc:creator>Bortolussi, Luca</dc:creator>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-09-15T14:57:55Z</dc:date>
<dc:language>eng</dc:language>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:contributor>Petrov, Tatjana</dc:contributor>
<dc:creator>Klein, Julia</dc:creator>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74546"/>
</rdf:Description>
</rdf:RDF>