Publikation: LMBOPT : a limited memory method for bound-constrained optimization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Recently, Neumaier and Azmi gave a comprehensive convergence theory for a generic algorithm for bound constrained optimization problems with a continuously differentiable objective function. The algorithm combines an active set strategy with a gradient-free line search CLS along a piecewise linear search path defined by directions chosen to reduce zigzagging. This paper describes LMBOPT, an efficient implementation of this scheme. It employs new limited memory techniques for computing the search directions, improves CLS by adding various safeguards relevant when finite precision arithmetic is used, and adds many practical enhancements in other details. The paper compares LMBOPT and several other solvers on the unconstrained and bound constrained problems from the CUTEst collection and makes recommendations on which solver to use and when. Depending on the problem class, the problem dimension, and the precise goal, the best solvers are LMBOPT, ASACG, and LMBFG-EIG-MS.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KIMIAEI, Morteza, Arnold NEUMAIER, Behzad AZMI, 2022. LMBOPT : a limited memory method for bound-constrained optimization. In: Mathematical Programming Computation. Springer. 2022, 14(2), pp. 271-318. ISSN 1867-2949. eISSN 1867-2957. Available under: doi: 10.1007/s12532-021-00213-xBibTex
@article{Kimiaei2022-06LMBOP-56295, year={2022}, doi={10.1007/s12532-021-00213-x}, title={LMBOPT : a limited memory method for bound-constrained optimization}, number={2}, volume={14}, issn={1867-2949}, journal={Mathematical Programming Computation}, pages={271--318}, author={Kimiaei, Morteza and Neumaier, Arnold and Azmi, Behzad} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56295"> <dcterms:title>LMBOPT : a limited memory method for bound-constrained optimization</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-21T12:21:56Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56295/1/Kimiaei_2-1amcqdcshpdw28.pdf"/> <dc:creator>Neumaier, Arnold</dc:creator> <dc:creator>Azmi, Behzad</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Neumaier, Arnold</dc:contributor> <dc:contributor>Azmi, Behzad</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-21T12:21:56Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kimiaei, Morteza</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56295/1/Kimiaei_2-1amcqdcshpdw28.pdf"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">Recently, Neumaier and Azmi gave a comprehensive convergence theory for a generic algorithm for bound constrained optimization problems with a continuously differentiable objective function. The algorithm combines an active set strategy with a gradient-free line search CLS along a piecewise linear search path defined by directions chosen to reduce zigzagging. This paper describes LMBOPT, an efficient implementation of this scheme. It employs new limited memory techniques for computing the search directions, improves CLS by adding various safeguards relevant when finite precision arithmetic is used, and adds many practical enhancements in other details. The paper compares LMBOPT and several other solvers on the unconstrained and bound constrained problems from the CUTEst collection and makes recommendations on which solver to use and when. Depending on the problem class, the problem dimension, and the precise goal, the best solvers are LMBOPT, ASACG, and LMBFG-EIG-MS.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56295"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Kimiaei, Morteza</dc:contributor> <dcterms:issued>2022-06</dcterms:issued> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> </rdf:Description> </rdf:RDF>