Publikation: On the approximation of the Fokker-Planck equation by moment systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The aim of this paper is to show that moment approximations of kinetic equations based on a maximum-entropy approach can suffer from severe drawbacks if the kinetic velocity space is unbounded. As example, we study the Fokker-Planck equation where explicit expressions for the moments of solutions to Riemann problems can be derived. The quality of the closure relation obtained from the maximum-entropy approach as well as the Hermite/Grad approach is studied in the case of five moments. It turns out that the maximum-entropy closure is even singular in equilibrium states while the Hermite/Grad closure behaves reasonably. In particular, the admissible moments may lead to arbitrarily large speeds of propagation, even for initial data arbitrary close to global eqilibrium.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DREYER, Wolfgang, Michael JUNK, Matthias KUNIK, 2001. On the approximation of the Fokker-Planck equation by moment systems. In: Nonlinearity. 2001, 14(4), pp. 881-906. ISSN 0951-7715. eISSN 1361-6544. Available under: doi: 10.1088/0951-7715/14/4/314BibTex
@article{Dreyer2001appro-25429, year={2001}, doi={10.1088/0951-7715/14/4/314}, title={On the approximation of the Fokker-Planck equation by moment systems}, number={4}, volume={14}, issn={0951-7715}, journal={Nonlinearity}, pages={881--906}, author={Dreyer, Wolfgang and Junk, Michael and Kunik, Matthias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25429"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Dreyer, Wolfgang</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Dreyer, Wolfgang</dc:creator> <dcterms:issued>2001</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">The aim of this paper is to show that moment approximations of kinetic equations based on a maximum-entropy approach can suffer from severe drawbacks if the kinetic velocity space is unbounded. As example, we study the Fokker-Planck equation where explicit expressions for the moments of solutions to Riemann problems can be derived. The quality of the closure relation obtained from the maximum-entropy approach as well as the Hermite/Grad approach is studied in the case of five moments. It turns out that the maximum-entropy closure is even singular in equilibrium states while the Hermite/Grad closure behaves reasonably. In particular, the admissible moments may lead to arbitrarily large speeds of propagation, even for initial data arbitrary close to global eqilibrium.</dcterms:abstract> <dcterms:bibliographicCitation>Nonlinearity ; 14 (2001), 4. - S. 881-906</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-12T20:24:49Z</dcterms:available> <dc:contributor>Kunik, Matthias</dc:contributor> <dc:contributor>Junk, Michael</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25429"/> <dc:creator>Kunik, Matthias</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-12T20:24:49Z</dc:date> <dcterms:title>On the approximation of the Fokker-Planck equation by moment systems</dcterms:title> <dc:creator>Junk, Michael</dc:creator> </rdf:Description> </rdf:RDF>