Publikation:

Value Groups of Real Closed Fields and Fragments of Peano Arithmetic

Lade...
Vorschaubild

Dateien

carl_212638.pdf
carl_212638.pdfGröße: 191.08 KBDownloads: 182

Datum

2012

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We investigate real closed fields admitting an integer part of which non-negative cone is a model of Peano Arithmetic (or of its fragments, e.g. bounded arithmetic with exponentiation). We obtain necessary conditions on the value group of such a real closed field. These allow us to construct a class of examples of real closed fields which do not admit such integer parts.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KUHLMANN, Salma, Merlin CARL, Paola D'AQUINO, 2012. Value Groups of Real Closed Fields and Fragments of Peano Arithmetic
BibTex
@unpublished{Kuhlmann2012Value-21263,
  year={2012},
  title={Value Groups of Real Closed Fields and Fragments of Peano Arithmetic},
  author={Kuhlmann, Salma and Carl, Merlin and D'Aquino, Paola}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21263">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21263/1/carl_212638.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21263/1/carl_212638.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-28T09:44:19Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>D'Aquino, Paola</dc:contributor>
    <dc:contributor>Carl, Merlin</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21263"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>D'Aquino, Paola</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-28T09:44:19Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">We investigate real closed fields admitting an integer part of which non-negative cone is a model of Peano Arithmetic (or of its fragments, e.g. bounded arithmetic with exponentiation). We obtain necessary conditions on the value group of such a real closed field. These allow us to construct a class of examples of real closed fields which do not admit such integer parts.</dcterms:abstract>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:title>Value Groups of Real Closed Fields and Fragments of Peano Arithmetic</dcterms:title>
    <dc:creator>Carl, Merlin</dc:creator>
    <dc:creator>Kuhlmann, Salma</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen