Publikation:

Visual data mining in large geospatial point sets

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2004

Autor:innen

Panse, Christian
Sips, Mike
North, Stephen C.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Computer Graphics and Applications. 2004, 24(5), pp. 36-44. ISSN 0272-1716. eISSN 1558-1756. Available under: doi: 10.1109/MCG.2004.41

Zusammenfassung

Visual data-mining techniques have proven valuable in exploratory data analysis, and they have strong potential in the exploration of large databases. Detecting interesting local patterns in large data sets is a key research challenge. Particularly challenging today is finding and deploying efficient and scalable visualization strategies for exploring large geospatial data sets. One way is to share ideas from the statistics and machine-learning disciplines with ideas and methods from the information and geo-visualization disciplines. PixelMaps in the Waldo system demonstrates how data mining can be successfully integrated with interactive visualization. The increasing scale and complexity of data analysis problems require tighter integration of interactive geospatial data visualization with statistical data-mining algorithms.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Data mining, Data visualization, Large screen displays, Position measurement

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Christian PANSE, Mike SIPS, Stephen C. NORTH, 2004. Visual data mining in large geospatial point sets. In: IEEE Computer Graphics and Applications. 2004, 24(5), pp. 36-44. ISSN 0272-1716. eISSN 1558-1756. Available under: doi: 10.1109/MCG.2004.41
BibTex
@article{Keim2004-09Visua-40556,
  year={2004},
  doi={10.1109/MCG.2004.41},
  title={Visual data mining in large geospatial point sets},
  number={5},
  volume={24},
  issn={0272-1716},
  journal={IEEE Computer Graphics and Applications},
  pages={36--44},
  author={Keim, Daniel A. and Panse, Christian and Sips, Mike and North, Stephen C.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40556">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Panse, Christian</dc:contributor>
    <dcterms:issued>2004-09</dcterms:issued>
    <dc:creator>Sips, Mike</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-09T14:46:54Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>North, Stephen C.</dc:creator>
    <dcterms:title>Visual data mining in large geospatial point sets</dcterms:title>
    <dc:creator>Panse, Christian</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Sips, Mike</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-09T14:46:54Z</dc:date>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40556"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Visual data-mining techniques have proven valuable in exploratory data analysis, and they have strong potential in the exploration of large databases. Detecting interesting local patterns in large data sets is a key research challenge. Particularly challenging today is finding and deploying efficient and scalable visualization strategies for exploring large geospatial data sets. One way is to share ideas from the statistics and machine-learning disciplines with ideas and methods from the information and geo-visualization disciplines. PixelMaps in the Waldo system demonstrates how data mining can be successfully integrated with interactive visualization. The increasing scale and complexity of data analysis problems require tighter integration of interactive geospatial data visualization with statistical data-mining algorithms.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>North, Stephen C.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen