Publikation: Local mild solutions for rough stochastic partial differential equations
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Hesse, Robert
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Differential Equations. Elsevier. 2019, 267(11), pp. 6480-6538. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2019.06.026
Zusammenfassung
We investigate mild solutions for stochastic evolution equations driven by a fractional Brownian motion (fBm) with Hurst parameter in infinite-dimensional Banach spaces. Using elements from rough paths theory we introduce an appropriate integral with respect to the fBm. This allows us to solve pathwise our stochastic evolution equation in a suitable function space.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Stochastic evolution equations, Rough paths theory, Fractional Brownian motion
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
HESSE, Robert, Alexandra BLESSING-NEAMTU, 2019. Local mild solutions for rough stochastic partial differential equations. In: Journal of Differential Equations. Elsevier. 2019, 267(11), pp. 6480-6538. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2019.06.026BibTex
@article{Hesse2019Local-53818, year={2019}, doi={10.1016/j.jde.2019.06.026}, title={Local mild solutions for rough stochastic partial differential equations}, number={11}, volume={267}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={6480--6538}, author={Hesse, Robert and Blessing-Neamtu, Alexandra} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53818"> <dcterms:abstract xml:lang="eng">We investigate mild solutions for stochastic evolution equations driven by a fractional Brownian motion (fBm) with Hurst parameter in infinite-dimensional Banach spaces. Using elements from rough paths theory we introduce an appropriate integral with respect to the fBm. This allows us to solve pathwise our stochastic evolution equation in a suitable function space.</dcterms:abstract> <dc:creator>Hesse, Robert</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-31T07:28:40Z</dc:date> <dcterms:title>Local mild solutions for rough stochastic partial differential equations</dcterms:title> <dc:contributor>Hesse, Robert</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Blessing-Neamtu, Alexandra</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Blessing-Neamtu, Alexandra</dc:contributor> <dcterms:issued>2019</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53818"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-31T07:28:40Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja