Publikation: Improving Computer Vision Interpretability : Transparent Two-Level Classification for Complex Scenes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Treating images as data has become increasingly popular in political science. While existing classifiers for images reach high levels of accuracy, it is difficult to systematically assess the visual features on which they base their classification. This paper presents a two-level classification method that addresses this transparency problem. At the first stage, an image segmenter detects the objects present in the image and a feature vector is created from those objects. In the second stage, this feature vector is used as input for standard machine learning classifiers to discriminate between images. We apply this method to a new dataset of more than 140,000 images to detect which ones display political protest. This analysis demonstrates three advantages to this paper’s approach. First, identifying objects in images improves transparency by providing human-understandable labels for the objects shown on an image. Second, knowing these objects enables analysis of which distinguish protest images from non-protest ones. Third, comparing the importance of objects across countries reveals how protest behavior varies. These insights are not available using conventional computer vision classifiers and provide new opportunities for comparative research.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHOLZ, Stefan, Nils B. WEIDMANN, Zachary C. STEINERT-THRELKELD, Eda KEREMOGLU, Bastian GOLDLÜCKE, 2025. Improving Computer Vision Interpretability : Transparent Two-Level Classification for Complex Scenes. In: Political Analysis. Cambridge University Press. 2025, 33(2), S. 107-121. ISSN 1047-1987. eISSN 1476-4989. Verfügbar unter: doi: 10.1017/pan.2024.18BibTex
@article{Scholz2025-04Impro-71715, title={Improving Computer Vision Interpretability : Transparent Two-Level Classification for Complex Scenes}, year={2025}, doi={10.1017/pan.2024.18}, number={2}, volume={33}, issn={1047-1987}, journal={Political Analysis}, pages={107--121}, author={Scholz, Stefan and Weidmann, Nils B. and Steinert-Threlkeld, Zachary C. and Keremoglu, Eda and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71715"> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71715"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-17T07:33:49Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-17T07:33:49Z</dcterms:available> <dcterms:title>Improving Computer Vision Interpretability : Transparent Two-Level Classification for Complex Scenes</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71715/1/Scholz_2-1bakgy2j0ns5l0.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Scholz, Stefan</dc:contributor> <dc:creator>Steinert-Threlkeld, Zachary C.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Weidmann, Nils B.</dc:contributor> <dcterms:abstract>Treating images as data has become increasingly popular in political science. While existing classifiers for images reach high levels of accuracy, it is difficult to systematically assess the visual features on which they base their classification. This paper presents a two-level classification method that addresses this transparency problem. At the first stage, an image segmenter detects the objects present in the image and a feature vector is created from those objects. In the second stage, this feature vector is used as input for standard machine learning classifiers to discriminate between images. We apply this method to a new dataset of more than 140,000 images to detect which ones display political protest. This analysis demonstrates three advantages to this paper’s approach. First, identifying objects in images improves transparency by providing human-understandable labels for the objects shown on an image. Second, knowing these objects enables analysis of which distinguish protest images from non-protest ones. Third, comparing the importance of objects across countries reveals how protest behavior varies. These insights are not available using conventional computer vision classifiers and provide new opportunities for comparative research.</dcterms:abstract> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Keremoglu, Eda</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71715/1/Scholz_2-1bakgy2j0ns5l0.pdf"/> <dcterms:issued>2025-04</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Weidmann, Nils B.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Scholz, Stefan</dc:creator> <dc:contributor>Steinert-Threlkeld, Zachary C.</dc:contributor> <dc:contributor>Keremoglu, Eda</dc:contributor> </rdf:Description> </rdf:RDF>