Publikation:

Improving Computer Vision Interpretability : Transparent Two-Level Classification for Complex Scenes

Lade...
Vorschaubild

Dateien

Scholz_2-1bakgy2j0ns5l0.pdf
Scholz_2-1bakgy2j0ns5l0.pdfGröße: 5.83 MBDownloads: 5

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Political Analysis. Cambridge University Press. 2025, 33(2), S. 107-121. ISSN 1047-1987. eISSN 1476-4989. Verfügbar unter: doi: 10.1017/pan.2024.18

Zusammenfassung

Treating images as data has become increasingly popular in political science. While existing classifiers for images reach high levels of accuracy, it is difficult to systematically assess the visual features on which they base their classification. This paper presents a two-level classification method that addresses this transparency problem. At the first stage, an image segmenter detects the objects present in the image and a feature vector is created from those objects. In the second stage, this feature vector is used as input for standard machine learning classifiers to discriminate between images. We apply this method to a new dataset of more than 140,000 images to detect which ones display political protest. This analysis demonstrates three advantages to this paper’s approach. First, identifying objects in images improves transparency by providing human-understandable labels for the objects shown on an image. Second, knowing these objects enables analysis of which distinguish protest images from non-protest ones. Third, comparing the importance of objects across countries reveals how protest behavior varies. These insights are not available using conventional computer vision classifiers and provide new opportunities for comparative research.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

image analysis, computer vision, explainable AI, two-level classification, protest analysis

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Datensatz
Replication Data for: Improving Computer Vision Interpretability: Transparent Two-level Classification for Complex Scenes
(VV1, 2024) Scholz, Stefan; Weidmann, Nils B.; Steinert-Threlkeld, Zachary C.; Keremoglu, Eda; Goldlücke, Bastian

Zitieren

ISO 690SCHOLZ, Stefan, Nils B. WEIDMANN, Zachary C. STEINERT-THRELKELD, Eda KEREMOGLU, Bastian GOLDLÜCKE, 2025. Improving Computer Vision Interpretability : Transparent Two-Level Classification for Complex Scenes. In: Political Analysis. Cambridge University Press. 2025, 33(2), S. 107-121. ISSN 1047-1987. eISSN 1476-4989. Verfügbar unter: doi: 10.1017/pan.2024.18
BibTex
@article{Scholz2025-04Impro-71715,
  title={Improving Computer Vision Interpretability : Transparent Two-Level Classification for Complex Scenes},
  year={2025},
  doi={10.1017/pan.2024.18},
  number={2},
  volume={33},
  issn={1047-1987},
  journal={Political Analysis},
  pages={107--121},
  author={Scholz, Stefan and Weidmann, Nils B. and Steinert-Threlkeld, Zachary C. and Keremoglu, Eda and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71715">
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71715"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-17T07:33:49Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-17T07:33:49Z</dcterms:available>
    <dcterms:title>Improving Computer Vision Interpretability : Transparent Two-Level Classification for Complex Scenes</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71715/1/Scholz_2-1bakgy2j0ns5l0.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Scholz, Stefan</dc:contributor>
    <dc:creator>Steinert-Threlkeld, Zachary C.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Weidmann, Nils B.</dc:contributor>
    <dcterms:abstract>Treating images as data has become increasingly popular in political science. While existing classifiers for images reach high levels of accuracy, it is difficult to systematically assess the visual features on which they base their classification. This paper presents a two-level classification method that addresses this transparency problem. At the first stage, an image segmenter detects the objects present in the image and a feature vector is created from those objects. In the second stage, this feature vector is used as input for standard machine learning classifiers to discriminate between images. We apply this method to a new dataset of more than 140,000 images to detect which ones display political protest. This analysis demonstrates three advantages to this paper’s approach. First, identifying objects in images improves transparency by providing human-understandable labels for the objects shown on an image. Second, knowing these objects enables analysis of which distinguish protest images from non-protest ones. Third, comparing the importance of objects across countries reveals how protest behavior varies. These insights are not available using conventional computer vision classifiers and provide new opportunities for comparative research.</dcterms:abstract>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Keremoglu, Eda</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71715/1/Scholz_2-1bakgy2j0ns5l0.pdf"/>
    <dcterms:issued>2025-04</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Weidmann, Nils B.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Scholz, Stefan</dc:creator>
    <dc:contributor>Steinert-Threlkeld, Zachary C.</dc:contributor>
    <dc:contributor>Keremoglu, Eda</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
Replication code, model weights, and data for this article have been published on Dataverse
Diese Publikation teilen