Publikation: Risk Bounds for Reservoir Computing
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We analyze the practices of reservoir computing in the framework of statistical learning theory. In particular, we derive finite sample upper bounds for the generalization error committed by specific families of reservoir computing systems when processing discrete-time inputs under various hypotheses on their dependence structure. Non-asymptotic bounds are explicitly written down in terms of the multivariate Rademacher complexities of the reservoir systems and the weak dependence structure of the signals that are being handled. This allows, in particular, to determine the minimal number of observations needed in order to guarantee a prescribed estimation accuracy with high probability for a given reservoir family. At the same time, the asymptotic behavior of the devised bounds guarantees the consistency of the empirical risk minimization procedure for various hypothesis classes of reservoir functionals.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GONON, Lukas, Lyudmila GRIGORYEVA, Juan-Pablo ORTEGA, 2020. Risk Bounds for Reservoir Computing. In: Journal of Machine Learning Research (JMLR). Microtome Publishing. 2020, 21, 240. ISSN 1532-4435. eISSN 1533-7928BibTex
@article{Gonon2020Bound-52899, year={2020}, title={Risk Bounds for Reservoir Computing}, url={https://jmlr.csail.mit.edu/papers/v21/19-902.html}, volume={21}, issn={1532-4435}, journal={Journal of Machine Learning Research (JMLR)}, author={Gonon, Lukas and Grigoryeva, Lyudmila and Ortega, Juan-Pablo}, note={Article Number: 240} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52899"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Gonon, Lukas</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-18T10:24:29Z</dcterms:available> <dc:contributor>Grigoryeva, Lyudmila</dc:contributor> <dc:contributor>Gonon, Lukas</dc:contributor> <dc:contributor>Ortega, Juan-Pablo</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52899"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52899/1/Gonon_2-1bk1kceuhte259.pdf"/> <dcterms:title>Risk Bounds for Reservoir Computing</dcterms:title> <dc:creator>Ortega, Juan-Pablo</dc:creator> <dc:creator>Grigoryeva, Lyudmila</dc:creator> <dcterms:abstract xml:lang="eng">We analyze the practices of reservoir computing in the framework of statistical learning theory. In particular, we derive finite sample upper bounds for the generalization error committed by specific families of reservoir computing systems when processing discrete-time inputs under various hypotheses on their dependence structure. Non-asymptotic bounds are explicitly written down in terms of the multivariate Rademacher complexities of the reservoir systems and the weak dependence structure of the signals that are being handled. This allows, in particular, to determine the minimal number of observations needed in order to guarantee a prescribed estimation accuracy with high probability for a given reservoir family. At the same time, the asymptotic behavior of the devised bounds guarantees the consistency of the empirical risk minimization procedure for various hypothesis classes of reservoir functionals.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2020</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52899/1/Gonon_2-1bk1kceuhte259.pdf"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-18T10:24:29Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>