Publikation:

Risk Bounds for Reservoir Computing

Lade...
Vorschaubild

Dateien

Gonon_2-1bk1kceuhte259.pdf
Gonon_2-1bk1kceuhte259.pdfGröße: 823.13 KBDownloads: 104

Datum

2020

Autor:innen

Gonon, Lukas
Ortega, Juan-Pablo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Machine Learning Research (JMLR). Microtome Publishing. 2020, 21, 240. ISSN 1532-4435. eISSN 1533-7928

Zusammenfassung

We analyze the practices of reservoir computing in the framework of statistical learning theory. In particular, we derive finite sample upper bounds for the generalization error committed by specific families of reservoir computing systems when processing discrete-time inputs under various hypotheses on their dependence structure. Non-asymptotic bounds are explicitly written down in terms of the multivariate Rademacher complexities of the reservoir systems and the weak dependence structure of the signals that are being handled. This allows, in particular, to determine the minimal number of observations needed in order to guarantee a prescribed estimation accuracy with high probability for a given reservoir family. At the same time, the asymptotic behavior of the devised bounds guarantees the consistency of the empirical risk minimization procedure for various hypothesis classes of reservoir functionals.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Reservoir computing, RC, echo state networks, ESN, state affine systems, SAS, random reservoirs, Rademacher complexity, weak dependence, empirical risk minimization, PAC bounds, risk bounds

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GONON, Lukas, Lyudmila GRIGORYEVA, Juan-Pablo ORTEGA, 2020. Risk Bounds for Reservoir Computing. In: Journal of Machine Learning Research (JMLR). Microtome Publishing. 2020, 21, 240. ISSN 1532-4435. eISSN 1533-7928
BibTex
@article{Gonon2020Bound-52899,
  year={2020},
  title={Risk Bounds for Reservoir Computing},
  url={https://jmlr.csail.mit.edu/papers/v21/19-902.html},
  volume={21},
  issn={1532-4435},
  journal={Journal of Machine Learning Research (JMLR)},
  author={Gonon, Lukas and Grigoryeva, Lyudmila and Ortega, Juan-Pablo},
  note={Article Number: 240}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52899">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Gonon, Lukas</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-18T10:24:29Z</dcterms:available>
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
    <dc:contributor>Gonon, Lukas</dc:contributor>
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52899"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52899/1/Gonon_2-1bk1kceuhte259.pdf"/>
    <dcterms:title>Risk Bounds for Reservoir Computing</dcterms:title>
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <dcterms:abstract xml:lang="eng">We analyze the practices of reservoir computing in the framework of statistical learning theory. In particular, we derive finite sample upper bounds for the generalization error committed by specific families of reservoir computing systems when processing discrete-time inputs under various hypotheses on their dependence structure. Non-asymptotic bounds are explicitly written down in terms of the multivariate Rademacher complexities of the reservoir systems and the weak dependence structure of the signals that are being handled. This allows, in particular, to determine the minimal number of observations needed in order to guarantee a prescribed estimation accuracy with high probability for a given reservoir family. At the same time, the asymptotic behavior of the devised bounds guarantees the consistency of the empirical risk minimization procedure for various hypothesis classes of reservoir functionals.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2020</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52899/1/Gonon_2-1bk1kceuhte259.pdf"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-18T10:24:29Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2021-02-18

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen