Publikation:

Intelligent Visual Analytics Queries

Lade...
Vorschaubild

Dateien

VisQuery_073107_FinalSubmit.pdf
VisQuery_073107_FinalSubmit.pdfGröße: 1.8 MBDownloads: 590

Datum

2007

Autor:innen

Hao, Ming C.
Dayal, Umeshwar
Schneidewind, Jörn

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2007 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2007, pp. 91-98. ISBN 978-1-4244-1659-2. Available under: doi: 10.1109/VAST.2007.4389001

Zusammenfassung

Visualizations of large multi-dimensional data sets, occurring in scientific and commercial applications, often reveal interesting local patterns. Analysts want to identify the causes and impacts of these interesting areas, and they also want to search for similar patterns occurring elsewhere in the data set. In this paper we introduce the Intelligent Visual Analytics Query (IVQuery) concept that combines visual interaction with automated analytical methods to support analysts in discovering the special properties and relations of identified patterns. The idea of IVQuery is to interactively select focus areas in the visualization. Then, based on the characteristics of the selected areas, such as the selected data dimensions and data records, IVQuery employs analytical methods to identify the relationships to other portions of the data set. Finally, IVQuery generates visual representations for analysts to view and refine the results. IVQuery has been applied successfully to different real-world data sets, such as data warehouse performance, product sales, and sever performance analysis, and demonstrates the benefits of this technique over traditional filtering and zooming techniques. The visual analytics query technique can be used with many different types of visual representation. In this paper we show how to use IVQuery with parallel coordinates, visual maps, and scatter plots.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visual Analytics Query, Similarity Queries, Interactive Queries

Konferenz

2007 IEEE Symposium on Visual Analytics Science and Technology, 30. Okt. 2007 - 1. Nov. 2007, Sacramento, CA, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAO, Ming C., Umeshwar DAYAL, Daniel A. KEIM, Dominik MORENT, Jörn SCHNEIDEWIND, 2007. Intelligent Visual Analytics Queries. 2007 IEEE Symposium on Visual Analytics Science and Technology. Sacramento, CA, USA, 30. Okt. 2007 - 1. Nov. 2007. In: 2007 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2007, pp. 91-98. ISBN 978-1-4244-1659-2. Available under: doi: 10.1109/VAST.2007.4389001
BibTex
@inproceedings{Hao2007-10Intel-5628,
  year={2007},
  doi={10.1109/VAST.2007.4389001},
  title={Intelligent Visual Analytics Queries},
  isbn={978-1-4244-1659-2},
  publisher={IEEE},
  booktitle={2007 IEEE Symposium on Visual Analytics Science and Technology},
  pages={91--98},
  author={Hao, Ming C. and Dayal, Umeshwar and Keim, Daniel A. and Morent, Dominik and Schneidewind, Jörn}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5628">
    <dcterms:bibliographicCitation>First publ. in: IEEE Symposium on Visual Analytics and Technology (VAST 2007),Sacramento, CA, USA, October 30 - November 1, 2007</dcterms:bibliographicCitation>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:19Z</dc:date>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5628"/>
    <dc:creator>Hao, Ming C.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Morent, Dominik</dc:contributor>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:19Z</dcterms:available>
    <dcterms:issued>2007-10</dcterms:issued>
    <dc:creator>Morent, Dominik</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5628/1/VisQuery_073107_FinalSubmit.pdf"/>
    <dcterms:abstract xml:lang="eng">Visualizations of large multi-dimensional data sets, occurring in scientific and commercial applications, often reveal interesting local patterns. Analysts want to identify the causes and impacts of these interesting areas, and they also want to search for similar patterns occurring elsewhere in the data set. In this paper we introduce the Intelligent Visual Analytics Query (IVQuery) concept that combines visual interaction with automated analytical methods to support analysts in discovering the special properties and relations of identified patterns. The idea of IVQuery is to interactively select focus areas in the visualization. Then, based on the characteristics of the selected areas, such as the selected data dimensions and data records, IVQuery employs analytical methods to identify the relationships to other portions of the data set. Finally, IVQuery generates visual representations for analysts to view and refine the results. IVQuery has been applied successfully to different real-world data sets, such as data warehouse performance, product sales, and sever performance analysis, and demonstrates the benefits of this technique over traditional filtering and zooming techniques. The visual analytics query technique can be used with many different types of visual representation. In this paper we show how to use IVQuery with parallel coordinates, visual maps, and scatter plots.</dcterms:abstract>
    <dcterms:title>Intelligent Visual Analytics Queries</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5628/1/VisQuery_073107_FinalSubmit.pdf"/>
    <dc:contributor>Hao, Ming C.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen