Publikation: Non-uniqueness of entropy-conserving solutions to the ideal compressible MHD equations
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Autor:innen
Klingenberg, Christian
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
BRESSAN, Alberto, Hrsg., Marta LEWICKA, Hrsg., Dehua WANG, Hrsg. und andere. Hyperbolic Problems : Theory, Numerics, Applications : Proceedings of the Seventeenth International Conference on Hyperbolic Problems. Springfield, MO, USA: American Institute of Mathematical Sciences, 2020, S. 491-498. AIMS Series on Applied Mathematics. 10. ISBN 978-1-60133-023-9
Zusammenfassung
In this note we consider the ideal compressible magneto–hydro-dynamics (MHD) equations in a special two dimensional setting. We show that there exist particular initial data for which one obtains infinitely many entropy–conserving weak solutions by using the convex integration technique. Finally this is applied to the isentropic case.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Seventeenth International Conference on Hyperbolic Problems (HYP2018), 25. Juni 2018 - 29. Juni 2018, Centre County, Pennsylvania, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KLINGENBERG, Christian, Simon MARKFELDER, 2020. Non-uniqueness of entropy-conserving solutions to the ideal compressible MHD equations. Seventeenth International Conference on Hyperbolic Problems (HYP2018). Centre County, Pennsylvania, USA, 25. Juni 2018 - 29. Juni 2018. In: BRESSAN, Alberto, Hrsg., Marta LEWICKA, Hrsg., Dehua WANG, Hrsg. und andere. Hyperbolic Problems : Theory, Numerics, Applications : Proceedings of the Seventeenth International Conference on Hyperbolic Problems. Springfield, MO, USA: American Institute of Mathematical Sciences, 2020, S. 491-498. AIMS Series on Applied Mathematics. 10. ISBN 978-1-60133-023-9BibTex
@inproceedings{Klingenberg2020Nonun-72102, title={Non-uniqueness of entropy-conserving solutions to the ideal compressible MHD equations}, year={2020}, number={10}, isbn={978-1-60133-023-9}, address={Springfield, MO, USA}, publisher={American Institute of Mathematical Sciences}, series={AIMS Series on Applied Mathematics}, booktitle={Hyperbolic Problems : Theory, Numerics, Applications : Proceedings of the Seventeenth International Conference on Hyperbolic Problems}, pages={491--498}, editor={Bressan, Alberto and Lewicka, Marta and Wang, Dehua}, author={Klingenberg, Christian and Markfelder, Simon} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72102"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Non-uniqueness of entropy-conserving solutions to the ideal compressible MHD equations</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2020</dcterms:issued> <dc:creator>Markfelder, Simon</dc:creator> <dc:language>eng</dc:language> <dc:creator>Klingenberg, Christian</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-30T10:17:58Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Klingenberg, Christian</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-30T10:17:58Z</dc:date> <dcterms:abstract>In this note we consider the ideal compressible magneto–hydro-dynamics (MHD) equations in a special two dimensional setting. We show that there exist particular initial data for which one obtains infinitely many entropy–conserving weak solutions by using the convex integration technique. Finally this is applied to the isentropic case.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72102"/> <dc:contributor>Markfelder, Simon</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein