Publikation:

Optimal dispersive readout of a spin qubit with a microwave resonator

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review B. 2019, 100(24), 245427. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.100.245427

Zusammenfassung

Strong coupling of semiconductor spin qubits to superconducting microwave resonators was recently demonstrated [X. Mi et al., Nature 555, 599 (2018); A. J. Landig et al., Nature 560, 179 (2018); N. Samkharadze et al., Science 359, 1123 (2018); T. Cubaynes et al., NPJ Quant. Inf. 5, 47 (2019)]. These breakthroughs pave the way for quantum information processing that combines the long coherence times of solid-state spin qubits with the long-distance connectivity, fast control, and fast high-fidelity quantum-non-demolition readout of existing superconducting qubit implementations. Here we theoretically analyze and optimize the dispersive readout of a single spin in a semiconductor double quantum dot (DQD) coupled to a microwave resonator via its electric dipole moment. The strong spin-photon coupling arises from the motion of the electron spin in a local magnetic field gradient. We calculate the signal-to-noise ratio (SNR) of the readout accounting for both Purcell spin relaxation and spin relaxation arising from intrinsic electric noise within the semiconductor. We express the maximum achievable SNR in terms of the cooperativity associated with these two dissipation processes. We find that while the cooperativity increases with the strength of the dipole coupling between the DQD and the resonator, it does not depend on the strength of the magnetic field gradient. We then optimize the SNR as a function of experimentally tunable DQD parameters. We identify wide regions of parameter space where the unwanted backaction of the resonator photons on the qubit is small. Moreover, we find that the coupling of the resonator to other DQD transitions can enhance the SNR by at least a factor of two, a “straddling” effect [J. Koch et al., Phys. Rev. A 76, 042319 (2007)] that occurs only at nonzero energy detuning of the DQD double-well potential. We estimate that with current technology, single-shot readout fidelities in the range 82–95% can be achieved within a few μs of readout time without requiring the use of Purcell filters.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690D'ANJOU, Benjamin, Guido BURKARD, 2019. Optimal dispersive readout of a spin qubit with a microwave resonator. In: Physical Review B. 2019, 100(24), 245427. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.100.245427
BibTex
@article{DAnjou2019Optim-48091,
  year={2019},
  doi={10.1103/PhysRevB.100.245427},
  title={Optimal dispersive readout of a spin qubit with a microwave resonator},
  number={24},
  volume={100},
  issn={2469-9950},
  journal={Physical Review B},
  author={D'Anjou, Benjamin and Burkard, Guido},
  note={Article Number: 245427}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48091">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Burkard, Guido</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Optimal dispersive readout of a spin qubit with a microwave resonator</dcterms:title>
    <dc:contributor>Burkard, Guido</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-18T09:36:15Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:issued>2019</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-18T09:36:15Z</dc:date>
    <dc:creator>D'Anjou, Benjamin</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48091"/>
    <dc:contributor>D'Anjou, Benjamin</dc:contributor>
    <dcterms:abstract xml:lang="eng">Strong coupling of semiconductor spin qubits to superconducting microwave resonators was recently demonstrated [X. Mi et al., Nature 555, 599 (2018); A. J. Landig et al., Nature 560, 179 (2018); N. Samkharadze et al., Science 359, 1123 (2018); T. Cubaynes et al., NPJ Quant. Inf. 5, 47 (2019)]. These breakthroughs pave the way for quantum information processing that combines the long coherence times of solid-state spin qubits with the long-distance connectivity, fast control, and fast high-fidelity quantum-non-demolition readout of existing superconducting qubit implementations. Here we theoretically analyze and optimize the dispersive readout of a single spin in a semiconductor double quantum dot (DQD) coupled to a microwave resonator via its electric dipole moment. The strong spin-photon coupling arises from the motion of the electron spin in a local magnetic field gradient. We calculate the signal-to-noise ratio (SNR) of the readout accounting for both Purcell spin relaxation and spin relaxation arising from intrinsic electric noise within the semiconductor. We express the maximum achievable SNR in terms of the cooperativity associated with these two dissipation processes. We find that while the cooperativity increases with the strength of the dipole coupling between the DQD and the resonator, it does not depend on the strength of the magnetic field gradient. We then optimize the SNR as a function of experimentally tunable DQD parameters. We identify wide regions of parameter space where the unwanted backaction of the resonator photons on the qubit is small. Moreover, we find that the coupling of the resonator to other DQD transitions can enhance the SNR by at least a factor of two, a “straddling” effect [J. Koch et al., Phys. Rev. A 76, 042319 (2007)] that occurs only at nonzero energy detuning of the DQD double-well potential. We estimate that with current technology, single-shot readout fidelities in the range 82–95% can be achieved within a few μs of readout time without requiring the use of Purcell filters.</dcterms:abstract>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen