Publikation: Counteracting estimation bias and social influence to improve the wisdom of crowds
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Aggregating multiple non-expert opinions into a collective estimate can improve accuracy across many contexts. However, two sources of error can diminish collective wisdom: individual estimation biases and information sharing between individuals. Here, we measure individual biases and social influence rules in multiple experiments involving hundreds of individuals performing a classic numerosity estimation task. We first investigate how existing aggregation methods, such as calculating the arithmetic mean or the median, are influenced by these sources of error. We show that the mean tends to overestimate, and the median underestimate, the true value for a wide range of numerosities. Quantifying estimation bias, and mapping individual bias to collective bias, allows us to develop and validate three new aggregation measures that effectively counter sources of collective estimation error. In addition, we present results from a further experiment that quantifies the social influence rules that individuals employ when incorporating personal estimates with social information. We show that the corrected mean is remarkably robust to social influence, retaining high accuracy in the presence or absence of social influence, across numerosities and across different methods for averaging social information. Using knowledge of estimation biases and social influence rules may therefore be an inexpensive and general strategy to improve the wisdom of crowds.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAO, Albert B., Andrew M. BERDAHL, Andrew T. HARTNETT, Matthew J. LUTZ, Joseph B. BAK-COLEMAN, Christos C. IOANNOU, Xingli GIAM, Iain D. COUZIN, 2018. Counteracting estimation bias and social influence to improve the wisdom of crowds. In: Interface : Journal of the Royal Society. 2018, 15(141), 20180130. ISSN 1742-5689. eISSN 1742-5662. Available under: doi: 10.1098/rsif.2018.0130BibTex
@article{Kao2018-04Count-42457, year={2018}, doi={10.1098/rsif.2018.0130}, title={Counteracting estimation bias and social influence to improve the wisdom of crowds}, number={141}, volume={15}, issn={1742-5689}, journal={Interface : Journal of the Royal Society}, author={Kao, Albert B. and Berdahl, Andrew M. and Hartnett, Andrew T. and Lutz, Matthew J. and Bak-Coleman, Joseph B. and Ioannou, Christos C. and Giam, Xingli and Couzin, Iain D.}, note={Article Number: 20180130} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42457"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Berdahl, Andrew M.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42457/1/Kao_2-1btenuimit1eq5.pdf"/> <dcterms:title>Counteracting estimation bias and social influence to improve the wisdom of crowds</dcterms:title> <dc:contributor>Lutz, Matthew J.</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Giam, Xingli</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2018-04</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Couzin, Iain D.</dc:creator> <dc:creator>Bak-Coleman, Joseph B.</dc:creator> <dc:creator>Lutz, Matthew J.</dc:creator> <dc:contributor>Kao, Albert B.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-30T07:07:42Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-30T07:07:42Z</dc:date> <dc:contributor>Ioannou, Christos C.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Hartnett, Andrew T.</dc:creator> <dc:contributor>Hartnett, Andrew T.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42457/1/Kao_2-1btenuimit1eq5.pdf"/> <dc:creator>Ioannou, Christos C.</dc:creator> <dc:contributor>Bak-Coleman, Joseph B.</dc:contributor> <dcterms:abstract xml:lang="eng">Aggregating multiple non-expert opinions into a collective estimate can improve accuracy across many contexts. However, two sources of error can diminish collective wisdom: individual estimation biases and information sharing between individuals. Here, we measure individual biases and social influence rules in multiple experiments involving hundreds of individuals performing a classic numerosity estimation task. We first investigate how existing aggregation methods, such as calculating the arithmetic mean or the median, are influenced by these sources of error. We show that the mean tends to overestimate, and the median underestimate, the true value for a wide range of numerosities. Quantifying estimation bias, and mapping individual bias to collective bias, allows us to develop and validate three new aggregation measures that effectively counter sources of collective estimation error. In addition, we present results from a further experiment that quantifies the social influence rules that individuals employ when incorporating personal estimates with social information. We show that the corrected mean is remarkably robust to social influence, retaining high accuracy in the presence or absence of social influence, across numerosities and across different methods for averaging social information. Using knowledge of estimation biases and social influence rules may therefore be an inexpensive and general strategy to improve the wisdom of crowds.</dcterms:abstract> <dc:contributor>Couzin, Iain D.</dc:contributor> <dc:creator>Berdahl, Andrew M.</dc:creator> <dc:creator>Kao, Albert B.</dc:creator> <dc:contributor>Giam, Xingli</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42457"/> </rdf:Description> </rdf:RDF>