Counteracting estimation bias and social influence to improve the wisdom of crowds

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Kao, Albert B.
Berdahl, Andrew M.
Hartnett, Andrew T.
Bak-Coleman, Joseph B.
Ioannou, Christos C.
Giam, Xingli
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Interface : Journal of the Royal Society. 2018, 15(141), 20180130. ISSN 1742-5689. eISSN 1742-5662. Available under: doi: 10.1098/rsif.2018.0130
Zusammenfassung

Aggregating multiple non-expert opinions into a collective estimate can improve accuracy across many contexts. However, two sources of error can diminish collective wisdom: individual estimation biases and information sharing between individuals. Here, we measure individual biases and social influence rules in multiple experiments involving hundreds of individuals performing a classic numerosity estimation task. We first investigate how existing aggregation methods, such as calculating the arithmetic mean or the median, are influenced by these sources of error. We show that the mean tends to overestimate, and the median underestimate, the true value for a wide range of numerosities. Quantifying estimation bias, and mapping individual bias to collective bias, allows us to develop and validate three new aggregation measures that effectively counter sources of collective estimation error. In addition, we present results from a further experiment that quantifies the social influence rules that individuals employ when incorporating personal estimates with social information. We show that the corrected mean is remarkably robust to social influence, retaining high accuracy in the presence or absence of social influence, across numerosities and across different methods for averaging social information. Using knowledge of estimation biases and social influence rules may therefore be an inexpensive and general strategy to improve the wisdom of crowds.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KAO, Albert B., Andrew M. BERDAHL, Andrew T. HARTNETT, Matthew J. LUTZ, Joseph B. BAK-COLEMAN, Christos C. IOANNOU, Xingli GIAM, Iain D. COUZIN, 2018. Counteracting estimation bias and social influence to improve the wisdom of crowds. In: Interface : Journal of the Royal Society. 2018, 15(141), 20180130. ISSN 1742-5689. eISSN 1742-5662. Available under: doi: 10.1098/rsif.2018.0130
BibTex
@article{Kao2018-04Count-42457,
  year={2018},
  doi={10.1098/rsif.2018.0130},
  title={Counteracting estimation bias and social influence to improve the wisdom of crowds},
  number={141},
  volume={15},
  issn={1742-5689},
  journal={Interface : Journal of the Royal Society},
  author={Kao, Albert B. and Berdahl, Andrew M. and Hartnett, Andrew T. and Lutz, Matthew J. and Bak-Coleman, Joseph B. and Ioannou, Christos C. and Giam, Xingli and Couzin, Iain D.},
  note={Article Number: 20180130}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42457">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Berdahl, Andrew M.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42457/1/Kao_2-1btenuimit1eq5.pdf"/>
    <dcterms:title>Counteracting estimation bias and social influence to improve the wisdom of crowds</dcterms:title>
    <dc:contributor>Lutz, Matthew J.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Giam, Xingli</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2018-04</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dc:creator>Bak-Coleman, Joseph B.</dc:creator>
    <dc:creator>Lutz, Matthew J.</dc:creator>
    <dc:contributor>Kao, Albert B.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-30T07:07:42Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-30T07:07:42Z</dc:date>
    <dc:contributor>Ioannou, Christos C.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Hartnett, Andrew T.</dc:creator>
    <dc:contributor>Hartnett, Andrew T.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42457/1/Kao_2-1btenuimit1eq5.pdf"/>
    <dc:creator>Ioannou, Christos C.</dc:creator>
    <dc:contributor>Bak-Coleman, Joseph B.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Aggregating multiple non-expert opinions into a collective estimate can improve accuracy across many contexts. However, two sources of error can diminish collective wisdom: individual estimation biases and information sharing between individuals. Here, we measure individual biases and social influence rules in multiple experiments involving hundreds of individuals performing a classic numerosity estimation task. We first investigate how existing aggregation methods, such as calculating the arithmetic mean or the median, are influenced by these sources of error. We show that the mean tends to overestimate, and the median underestimate, the true value for a wide range of numerosities. Quantifying estimation bias, and mapping individual bias to collective bias, allows us to develop and validate three new aggregation measures that effectively counter sources of collective estimation error. In addition, we present results from a further experiment that quantifies the social influence rules that individuals employ when incorporating personal estimates with social information. We show that the corrected mean is remarkably robust to social influence, retaining high accuracy in the presence or absence of social influence, across numerosities and across different methods for averaging social information. Using knowledge of estimation biases and social influence rules may therefore be an inexpensive and general strategy to improve the wisdom of crowds.</dcterms:abstract>
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dc:creator>Berdahl, Andrew M.</dc:creator>
    <dc:creator>Kao, Albert B.</dc:creator>
    <dc:contributor>Giam, Xingli</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42457"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen