Publikation:

P-DBSCAN : A density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos

Lade...
Vorschaubild

Dateien

17.pdf
17.pdfGröße: 4.26 MBDownloads: 1219

Datum

2010

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

LIAO, Lindi, ed.. Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research and Application. New York, N.Y: Association for Computing Machinery, 2010, 38. ISBN 978-1-4503-0031-5

Zusammenfassung

The rapid spread of location-based devices and cheap storage mechanisms, as well as fast development of Internet technology, allowed collection and distribution of huge amounts of user-generated data, such as people's movement or geo-tagged photos. These types of data produce new challenges for research in different application domains. In many cases, new algorithms should be devised to better portray the phenomena under investigation. In this paper, we present P-DBSCAN, a new density-based clustering algorithm based on DBSCAN for analysis of places and events using a collection of geo-tagged photos. We thereby introduce two new concepts: (1) density threshold, which is defined according to the number of people in the neighborhood, and (2) adaptive density, which is used for fast convergence towards high density regions. Our approach is demonstrated on the area of Washington, D.C.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Database Mangement, Database Applications, Data mining, Spatial databases, Computing Methodologies, Clustering Keywords, Density based clusterin

Konferenz

COM.Geo, 21. Juni 2010 - 23. Juni 2010, Washington, DC, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KISILEVICH, Slava, Florian MANSMANN, Daniel A. KEIM, 2010. P-DBSCAN : A density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos. COM.Geo. Washington, DC, USA, 21. Juni 2010 - 23. Juni 2010. In: LIAO, Lindi, ed.. Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research and Application. New York, N.Y: Association for Computing Machinery, 2010, 38. ISBN 978-1-4503-0031-5
BibTex
@inproceedings{Kisilevich2010PDBSC-6040,
  year={2010},
  title={P-DBSCAN : A density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos},
  isbn={978-1-4503-0031-5},
  publisher={Association for Computing Machinery},
  address={New York, N.Y},
  booktitle={Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research and Application},
  editor={Liao, Lindi},
  author={Kisilevich, Slava and Mansmann, Florian and Keim, Daniel A.},
  note={Article Number: 38}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6040">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6040/1/17.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6040/1/17.pdf"/>
    <dcterms:title>P-DBSCAN : A density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Mansmann, Florian</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:abstract xml:lang="eng">The rapid spread of location-based devices and cheap storage mechanisms, as well as fast development of Internet technology, allowed collection and distribution of huge amounts of user-generated data, such as people's movement or geo-tagged photos. These types of data produce new challenges for research in different application domains. In many cases, new algorithms should be devised to better portray the phenomena under investigation. In this paper, we present P-DBSCAN, a new density-based clustering algorithm based on DBSCAN for analysis of places and events using a collection of geo-tagged photos. We thereby introduce two new concepts: (1) density threshold, which is defined according to the number of people in the neighborhood, and (2) adaptive density, which is used for fast convergence towards high density regions. Our approach is demonstrated on the area of Washington, D.C.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6040"/>
    <dc:creator>Kisilevich, Slava</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:56Z</dc:date>
    <dc:creator>Mansmann, Florian</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kisilevich, Slava</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:bibliographicCitation>First publ. in: Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research &amp;amp; Application, COM.Geo 2010, Washington, DC, USA, June 21 - 23, 2010 / Lindi Liao (Ed.). - New York, N.Y. : Association for Computing Machinery, 2010. - Article No.: 38 - ISBN 978-1-4503-0031-5</dcterms:bibliographicCitation>
    <dc:creator>Keim, Daniel A.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen