Publikation: P-DBSCAN : A density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The rapid spread of location-based devices and cheap storage mechanisms, as well as fast development of Internet technology, allowed collection and distribution of huge amounts of user-generated data, such as people's movement or geo-tagged photos. These types of data produce new challenges for research in different application domains. In many cases, new algorithms should be devised to better portray the phenomena under investigation. In this paper, we present P-DBSCAN, a new density-based clustering algorithm based on DBSCAN for analysis of places and events using a collection of geo-tagged photos. We thereby introduce two new concepts: (1) density threshold, which is defined according to the number of people in the neighborhood, and (2) adaptive density, which is used for fast convergence towards high density regions. Our approach is demonstrated on the area of Washington, D.C.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KISILEVICH, Slava, Florian MANSMANN, Daniel A. KEIM, 2010. P-DBSCAN : A density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos. COM.Geo. Washington, DC, USA, 21. Juni 2010 - 23. Juni 2010. In: LIAO, Lindi, ed.. Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research and Application. New York, N.Y: Association for Computing Machinery, 2010, 38. ISBN 978-1-4503-0031-5BibTex
@inproceedings{Kisilevich2010PDBSC-6040, year={2010}, title={P-DBSCAN : A density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos}, isbn={978-1-4503-0031-5}, publisher={Association for Computing Machinery}, address={New York, N.Y}, booktitle={Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research and Application}, editor={Liao, Lindi}, author={Kisilevich, Slava and Mansmann, Florian and Keim, Daniel A.}, note={Article Number: 38} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6040"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2010</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6040/1/17.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6040/1/17.pdf"/> <dcterms:title>P-DBSCAN : A density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Mansmann, Florian</dc:contributor> <dc:format>application/pdf</dc:format> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:abstract xml:lang="eng">The rapid spread of location-based devices and cheap storage mechanisms, as well as fast development of Internet technology, allowed collection and distribution of huge amounts of user-generated data, such as people's movement or geo-tagged photos. These types of data produce new challenges for research in different application domains. In many cases, new algorithms should be devised to better portray the phenomena under investigation. In this paper, we present P-DBSCAN, a new density-based clustering algorithm based on DBSCAN for analysis of places and events using a collection of geo-tagged photos. We thereby introduce two new concepts: (1) density threshold, which is defined according to the number of people in the neighborhood, and (2) adaptive density, which is used for fast convergence towards high density regions. Our approach is demonstrated on the area of Washington, D.C.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6040"/> <dc:creator>Kisilevich, Slava</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:56Z</dc:date> <dc:creator>Mansmann, Florian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kisilevich, Slava</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:bibliographicCitation>First publ. in: Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research &amp; Application, COM.Geo 2010, Washington, DC, USA, June 21 - 23, 2010 / Lindi Liao (Ed.). - New York, N.Y. : Association for Computing Machinery, 2010. - Article No.: 38 - ISBN 978-1-4503-0031-5</dcterms:bibliographicCitation> <dc:creator>Keim, Daniel A.</dc:creator> </rdf:Description> </rdf:RDF>