Publikation:

KonIQ-10k: Towards an ecologically valid and large-scale IQA database

Lade...
Vorschaubild

Dateien

Lin_2-1bwsuooctmuyh0.pdf
Lin_2-1bwsuooctmuyh0.pdfGröße: 995.92 KBDownloads: 259

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

The main challenge in applying state-of-the-art deep learning methods to predict image quality in-the-wild is the relatively small size of existing quality scored datasets. The reason for the lack of larger datasets is the massive resources required in generating diverse and publishable content. We present a new systematic and scalable approach to create large-scale, authentic and diverse image datasets for Image Quality Assessment (IQA). We show how we built an IQA database, KonIQ-10k, consisting of 10,073 images, on which we performed very large scale crowdsourcing experiments in order to obtain reliable quality ratings from 1,467 crowd workers (1.2 million ratings). We argue for its ecological validity by analyzing the diversity of the dataset, by comparing it to state-of-the-art IQA databases, and by checking the reliability of our user studies.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Image database, image quality assessment, diversity sampling, crowdsourcing

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LIN, Hanhe, Vlad HOSU, Dietmar SAUPE, 2018. KonIQ-10k: Towards an ecologically valid and large-scale IQA database
BibTex
@unpublished{Lin2018-03-22T17:50:05ZKonIQ-42293,
  year={2018},
  title={KonIQ-10k: Towards an ecologically valid and large-scale IQA database},
  author={Lin, Hanhe and Hosu, Vlad and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42293">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dcterms:abstract xml:lang="eng">The main challenge in applying state-of-the-art deep learning methods to predict image quality in-the-wild is the relatively small size of existing quality scored datasets. The reason for the lack of larger datasets is the massive resources required in generating diverse and publishable content. We present a new systematic and scalable approach to create large-scale, authentic and diverse image datasets for Image Quality Assessment (IQA). We show how we built an IQA database, KonIQ-10k, consisting of 10,073 images, on which we performed very large scale crowdsourcing experiments in order to obtain reliable quality ratings from 1,467 crowd workers (1.2 million ratings). We argue for its ecological validity by analyzing the diversity of the dataset, by comparing it to state-of-the-art IQA databases, and by checking the reliability of our user studies.</dcterms:abstract>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>KonIQ-10k: Towards an ecologically valid and large-scale IQA database</dcterms:title>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42293/3/Lin_2-1bwsuooctmuyh0.pdf"/>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42293/3/Lin_2-1bwsuooctmuyh0.pdf"/>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42293"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2018-03-22T17:50:05Z</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T13:41:38Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T13:41:38Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen