KonIQ-10k: Towards an ecologically valid and large-scale IQA database
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The main challenge in applying state-of-the-art deep learning methods to predict image quality in-the-wild is the relatively small size of existing quality scored datasets. The reason for the lack of larger datasets is the massive resources required in generating diverse and publishable content. We present a new systematic and scalable approach to create large-scale, authentic and diverse image datasets for Image Quality Assessment (IQA). We show how we built an IQA database, KonIQ-10k, consisting of 10,073 images, on which we performed very large scale crowdsourcing experiments in order to obtain reliable quality ratings from 1,467 crowd workers (1.2 million ratings). We argue for its ecological validity by analyzing the diversity of the dataset, by comparing it to state-of-the-art IQA databases, and by checking the reliability of our user studies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LIN, Hanhe, Vlad HOSU, Dietmar SAUPE, 2018. KonIQ-10k: Towards an ecologically valid and large-scale IQA databaseBibTex
@unpublished{Lin2018-03-22T17:50:05ZKonIQ-42293, year={2018}, title={KonIQ-10k: Towards an ecologically valid and large-scale IQA database}, author={Lin, Hanhe and Hosu, Vlad and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42293"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Saupe, Dietmar</dc:creator> <dc:creator>Lin, Hanhe</dc:creator> <dcterms:abstract xml:lang="eng">The main challenge in applying state-of-the-art deep learning methods to predict image quality in-the-wild is the relatively small size of existing quality scored datasets. The reason for the lack of larger datasets is the massive resources required in generating diverse and publishable content. We present a new systematic and scalable approach to create large-scale, authentic and diverse image datasets for Image Quality Assessment (IQA). We show how we built an IQA database, KonIQ-10k, consisting of 10,073 images, on which we performed very large scale crowdsourcing experiments in order to obtain reliable quality ratings from 1,467 crowd workers (1.2 million ratings). We argue for its ecological validity by analyzing the diversity of the dataset, by comparing it to state-of-the-art IQA databases, and by checking the reliability of our user studies.</dcterms:abstract> <dc:contributor>Hosu, Vlad</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>KonIQ-10k: Towards an ecologically valid and large-scale IQA database</dcterms:title> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42293/3/Lin_2-1bwsuooctmuyh0.pdf"/> <dc:creator>Hosu, Vlad</dc:creator> <dc:contributor>Saupe, Dietmar</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42293/3/Lin_2-1bwsuooctmuyh0.pdf"/> <dc:contributor>Lin, Hanhe</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42293"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2018-03-22T17:50:05Z</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T13:41:38Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T13:41:38Z</dc:date> </rdf:Description> </rdf:RDF>