Publikation:

Dynamic sweet spot of driven flopping-mode spin qubits in planar quantum dots

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review B. American Physical Society (APS). 2024, 110(24), 245301. ISSN 2469-9950. eISSN 2469-9969. Verfügbar unter: doi: 10.1103/physrevb.110.245301

Zusammenfassung

Semiconductor quantum dots with confined electron or hole spins show promise for quantum information processing as they allow for efficient electric field-driven qubit manipulation. However, their susceptibility to electric noise poses a challenge that may hinder the effectiveness of these qubits. Here, we explore the impact of electric noise on a planar double quantum dot (DQD) spin qubit under the influence of AC gates applied to the dot levels, focusing on the flopping-mode spin qubit with spin-orbit interaction. We employ a rotating wave approximation within a time-dependent effective Hamiltonian to derive analytic expressions for the Rabi frequency of spin qubit oscillations with a single electron or hole in a DQD. We find that driving the qubit off-resonantly effectively mitigates the influence of charge noise, leading to a manifestation of a dynamic sweet spot. The proposed mode of operation notably improves the fidelity of quantum gates, particularly within specific ranges of drive parameters and detuning during qubit manipulation. Furthermore, our study unveils the potential of inducing a second-order dynamic sweet spot, a phenomenon tunable by drive and DQD parameters. Understanding the importance of driving qubits off-resonantly is essential for developing high-coherence planar DQD spin qubits, both for electrons in silicon and holes in germanium.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAJATI, Yaser, Guido BURKARD, 2024. Dynamic sweet spot of driven flopping-mode spin qubits in planar quantum dots. In: Physical Review B. American Physical Society (APS). 2024, 110(24), 245301. ISSN 2469-9950. eISSN 2469-9969. Verfügbar unter: doi: 10.1103/physrevb.110.245301
BibTex
@article{Hajati2024-12-06Dynam-71631,
  year={2024},
  doi={10.1103/physrevb.110.245301},
  title={Dynamic sweet spot of driven flopping-mode spin qubits in planar quantum dots},
  number={24},
  volume={110},
  issn={2469-9950},
  journal={Physical Review B},
  author={Hajati, Yaser and Burkard, Guido},
  note={Article Number: 245301}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71631">
    <dc:creator>Hajati, Yaser</dc:creator>
    <dcterms:title>Dynamic sweet spot of driven flopping-mode spin qubits in planar quantum dots</dcterms:title>
    <dc:contributor>Hajati, Yaser</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71631"/>
    <dc:creator>Burkard, Guido</dc:creator>
    <dcterms:issued>2024-12-06</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract>Semiconductor quantum dots with confined electron or hole spins show promise for quantum information processing as they allow for efficient electric field-driven qubit manipulation. However, their susceptibility to electric noise poses a challenge that may hinder the effectiveness of these qubits. Here, we explore the impact of electric noise on a planar double quantum dot (DQD) spin qubit under the influence of AC gates applied to the dot levels, focusing on the flopping-mode spin qubit with spin-orbit interaction. We employ a rotating wave approximation within a time-dependent effective Hamiltonian to derive analytic expressions for the Rabi frequency of spin qubit oscillations with a single electron or hole in a DQD. We find that driving the qubit off-resonantly effectively mitigates the influence of charge noise, leading to a manifestation of a dynamic sweet spot. The proposed mode of operation notably improves the fidelity of quantum gates, particularly within specific ranges of drive parameters and detuning during qubit manipulation. Furthermore, our study unveils the potential of inducing a second-order dynamic sweet spot, a phenomenon tunable by drive and DQD parameters. Understanding the importance of driving qubits off-resonantly is essential for developing high-coherence planar DQD spin qubits, both for electrons in silicon and holes in germanium.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Burkard, Guido</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T06:01:35Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T06:01:35Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen