Publikation: Individual error correction drives responsive self-assembly of army ant scaffolds
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
An inherent strength of evolved collective systems is their ability to rapidly adapt to dynamic environmental conditions, offering resilience in the face of disruption. This is thought to arise when individual sensory inputs are filtered through local interactions, producing an adaptive response at the group level. To understand how simple rules encoded at the individual level can lead to the emergence of robust group-level (or distributed) control, we examined structures we call "scaffolds," self-assembled by Eciton burchellii army ants on inclined surfaces that aid travel during foraging and migration. We conducted field experiments with wild E. burchellii colonies, manipulating the slope over which ants traversed, to examine the formation of scaffolds and their effects on foraging traffic. Our results show that scaffolds regularly form on inclined surfaces and that they reduce losses of foragers and prey, by reducing slipping and/or falling of ants, thus facilitating traffic flow. We describe the relative effects of environmental geometry and traffic on their growth and present a theoretical model to examine how the individual behaviors underlying scaffold formation drive group-level effects. Our model describes scaffold growth as a control response at the collective level that can emerge from individual error correction, requiring no complex communication among ants. We show that this model captures the dynamics observed in our experiments and is able to predict the growth-and final size-of scaffolds, and we show how the analytical solution allows for estimation of these dynamics.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LUTZ, Matthew J., Chris R. REID, Christopher J. LUSTRI, Albert B. KAO, Simon GARNIER, Iain D. COUZIN, 2021. Individual error correction drives responsive self-assembly of army ant scaffolds. In: Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. 2021, 118(17), e2013741118. ISSN 0027-8424. eISSN 1091-6490. Available under: doi: 10.1073/pnas.2013741118BibTex
@article{Lutz2021-04-27Indiv-53604, year={2021}, doi={10.1073/pnas.2013741118}, title={Individual error correction drives responsive self-assembly of army ant scaffolds}, number={17}, volume={118}, issn={0027-8424}, journal={Proceedings of the National Academy of Sciences of the United States of America}, author={Lutz, Matthew J. and Reid, Chris R. and Lustri, Christopher J. and Kao, Albert B. and Garnier, Simon and Couzin, Iain D.}, note={Article Number: e2013741118} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53604"> <dc:creator>Couzin, Iain D.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-05T15:04:29Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dc:contributor>Lutz, Matthew J.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53604/1/Lutz_2-1byzkygaoqaqq1.pdf"/> <dc:creator>Kao, Albert B.</dc:creator> <dc:contributor>Couzin, Iain D.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Garnier, Simon</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dc:language>eng</dc:language> <dc:creator>Reid, Chris R.</dc:creator> <dc:creator>Garnier, Simon</dc:creator> <dcterms:issued>2021-04-27</dcterms:issued> <dc:contributor>Reid, Chris R.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53604"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">An inherent strength of evolved collective systems is their ability to rapidly adapt to dynamic environmental conditions, offering resilience in the face of disruption. This is thought to arise when individual sensory inputs are filtered through local interactions, producing an adaptive response at the group level. To understand how simple rules encoded at the individual level can lead to the emergence of robust group-level (or distributed) control, we examined structures we call "scaffolds," self-assembled by Eciton burchellii army ants on inclined surfaces that aid travel during foraging and migration. We conducted field experiments with wild E. burchellii colonies, manipulating the slope over which ants traversed, to examine the formation of scaffolds and their effects on foraging traffic. Our results show that scaffolds regularly form on inclined surfaces and that they reduce losses of foragers and prey, by reducing slipping and/or falling of ants, thus facilitating traffic flow. We describe the relative effects of environmental geometry and traffic on their growth and present a theoretical model to examine how the individual behaviors underlying scaffold formation drive group-level effects. Our model describes scaffold growth as a control response at the collective level that can emerge from individual error correction, requiring no complex communication among ants. We show that this model captures the dynamics observed in our experiments and is able to predict the growth-and final size-of scaffolds, and we show how the analytical solution allows for estimation of these dynamics.</dcterms:abstract> <dc:contributor>Kao, Albert B.</dc:contributor> <dc:contributor>Lustri, Christopher J.</dc:contributor> <dcterms:title>Individual error correction drives responsive self-assembly of army ant scaffolds</dcterms:title> <dc:creator>Lutz, Matthew J.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-05T15:04:29Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53604/1/Lutz_2-1byzkygaoqaqq1.pdf"/> <dc:creator>Lustri, Christopher J.</dc:creator> </rdf:Description> </rdf:RDF>