Publikation: Validating daily social media macroscopes of emotions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Measuring sentiment in social media text has become an important practice in studying emotions at the macroscopic level. However, this approach can suffer from methodological issues like sampling biases and measurement errors. To date, it has not been validated if social media sentiment can actually measure the temporal dynamics of mood and emotions aggregated at the level of communities. We ran a large-scale survey at an online newspaper to gather daily mood self-reports from its users, and compare these with aggregated results of sentiment analysis of user discussions. We find strong correlations between text analysis results and levels of self-reported mood, as well as between inter-day changes of both measurements. We replicate these results using sentiment data from Twitter. We show that a combination of supervised text analysis methods based on novel deep learning architectures and unsupervised dictionary-based methods have high agreement with the time series of aggregated mood measured with self-reports. Our findings indicate that macro level dynamics of mood expressed on an online platform can be tracked with social media text, especially in situations of high mood variability.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PELLERT, Max, Hannah METZLER, Michael MATZENBERGER, David GARCIA, 2022. Validating daily social media macroscopes of emotions. In: Scientific Reports. Springer Nature. 2022, 12, 11236. eISSN 2045-2322. Available under: doi: 10.1038/s41598-022-14579-yBibTex
@article{Pellert2022Valid-59769, year={2022}, doi={10.1038/s41598-022-14579-y}, title={Validating daily social media macroscopes of emotions}, volume={12}, journal={Scientific Reports}, author={Pellert, Max and Metzler, Hannah and Matzenberger, Michael and Garcia, David}, note={Article Number: 11236} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59769"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59769/1/Pellert_2-1c4fjlm32rylo7.pdf"/> <dc:creator>Pellert, Max</dc:creator> <dc:language>eng</dc:language> <dc:creator>Metzler, Hannah</dc:creator> <dcterms:issued>2022</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T09:38:04Z</dcterms:available> <dc:contributor>Pellert, Max</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Garcia, David</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59769/1/Pellert_2-1c4fjlm32rylo7.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T09:38:04Z</dc:date> <dc:contributor>Metzler, Hannah</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Matzenberger, Michael</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Garcia, David</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Validating daily social media macroscopes of emotions</dcterms:title> <dcterms:abstract xml:lang="eng">Measuring sentiment in social media text has become an important practice in studying emotions at the macroscopic level. However, this approach can suffer from methodological issues like sampling biases and measurement errors. To date, it has not been validated if social media sentiment can actually measure the temporal dynamics of mood and emotions aggregated at the level of communities. We ran a large-scale survey at an online newspaper to gather daily mood self-reports from its users, and compare these with aggregated results of sentiment analysis of user discussions. We find strong correlations between text analysis results and levels of self-reported mood, as well as between inter-day changes of both measurements. We replicate these results using sentiment data from Twitter. We show that a combination of supervised text analysis methods based on novel deep learning architectures and unsupervised dictionary-based methods have high agreement with the time series of aggregated mood measured with self-reports. Our findings indicate that macro level dynamics of mood expressed on an online platform can be tracked with social media text, especially in situations of high mood variability.</dcterms:abstract> <dc:contributor>Matzenberger, Michael</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59769"/> </rdf:Description> </rdf:RDF>