Publikation:

Validating daily social media macroscopes of emotions

Lade...
Vorschaubild

Dateien

Pellert_2-1c4fjlm32rylo7.pdf
Pellert_2-1c4fjlm32rylo7.pdfGröße: 1.15 MBDownloads: 44

Datum

2022

Autor:innen

Pellert, Max
Metzler, Hannah
Matzenberger, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Scientific Reports. Springer Nature. 2022, 12, 11236. eISSN 2045-2322. Available under: doi: 10.1038/s41598-022-14579-y

Zusammenfassung

Measuring sentiment in social media text has become an important practice in studying emotions at the macroscopic level. However, this approach can suffer from methodological issues like sampling biases and measurement errors. To date, it has not been validated if social media sentiment can actually measure the temporal dynamics of mood and emotions aggregated at the level of communities. We ran a large-scale survey at an online newspaper to gather daily mood self-reports from its users, and compare these with aggregated results of sentiment analysis of user discussions. We find strong correlations between text analysis results and levels of self-reported mood, as well as between inter-day changes of both measurements. We replicate these results using sentiment data from Twitter. We show that a combination of supervised text analysis methods based on novel deep learning architectures and unsupervised dictionary-based methods have high agreement with the time series of aggregated mood measured with self-reports. Our findings indicate that macro level dynamics of mood expressed on an online platform can be tracked with social media text, especially in situations of high mood variability.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PELLERT, Max, Hannah METZLER, Michael MATZENBERGER, David GARCIA, 2022. Validating daily social media macroscopes of emotions. In: Scientific Reports. Springer Nature. 2022, 12, 11236. eISSN 2045-2322. Available under: doi: 10.1038/s41598-022-14579-y
BibTex
@article{Pellert2022Valid-59769,
  year={2022},
  doi={10.1038/s41598-022-14579-y},
  title={Validating daily social media macroscopes of emotions},
  volume={12},
  journal={Scientific Reports},
  author={Pellert, Max and Metzler, Hannah and Matzenberger, Michael and Garcia, David},
  note={Article Number: 11236}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59769">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59769/1/Pellert_2-1c4fjlm32rylo7.pdf"/>
    <dc:creator>Pellert, Max</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Metzler, Hannah</dc:creator>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T09:38:04Z</dcterms:available>
    <dc:contributor>Pellert, Max</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Garcia, David</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59769/1/Pellert_2-1c4fjlm32rylo7.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T09:38:04Z</dc:date>
    <dc:contributor>Metzler, Hannah</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Matzenberger, Michael</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Garcia, David</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Validating daily social media macroscopes of emotions</dcterms:title>
    <dcterms:abstract xml:lang="eng">Measuring sentiment in social media text has become an important practice in studying emotions at the macroscopic level. However, this approach can suffer from methodological issues like sampling biases and measurement errors. To date, it has not been validated if social media sentiment can actually measure the temporal dynamics of mood and emotions aggregated at the level of communities. We ran a large-scale survey at an online newspaper to gather daily mood self-reports from its users, and compare these with aggregated results of sentiment analysis of user discussions. We find strong correlations between text analysis results and levels of self-reported mood, as well as between inter-day changes of both measurements. We replicate these results using sentiment data from Twitter. We show that a combination of supervised text analysis methods based on novel deep learning architectures and unsupervised dictionary-based methods have high agreement with the time series of aggregated mood measured with self-reports. Our findings indicate that macro level dynamics of mood expressed on an online platform can be tracked with social media text, especially in situations of high mood variability.</dcterms:abstract>
    <dc:contributor>Matzenberger, Michael</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59769"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen