Publikation:

Modeling Morphological Priming in German With Naive Discriminative Learning

Lade...
Vorschaubild

Dateien

Baayen_2-1c7vxumxn36n60.pdf
Baayen_2-1c7vxumxn36n60.pdfGröße: 1.26 MBDownloads: 394

Datum

2020

Autor:innen

Baayen, R. Harald

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Frontiers in Communication. Frontiers Media. 2020, 5, 17. eISSN 2297-900X. Available under: doi: 10.3389/fcomm.2020.00017

Zusammenfassung

Both localist and connectionist models, based on experimental results obtained for English and French, assume that the degree of semantic compositionality of a morphologically complex word is reflected in how it is processed. Since priming experiments using English and French morphologically related prime-target pairs reveal stronger priming when complex words are semantically transparent (e.g., refill–fill) compared to semantically more opaque pairs (e.g., restrain–strain), localist models set up connections between complex words and their stems only for semantically transparent pairs. Connectionist models have argued that the effect of transparency should arise as an epiphenomenon in PDP networks. However, for German, a series of studies has revealed equivalent priming for both transparent and opaque prime-target pairs, which suggests mediation of lexical access by the stem, independent of degrees of semantic compositionality. This study reports a priming experiment that replicates equivalent priming for transparent and opaque pairs. We show that these behavioral results can be straightforwardly modeled by a computational implementation of Word and Paradigm Morphology (WPM), Naive Discriminative Learning (NDL). Just as WPM, NDL eschews the theoretical construct of the morpheme. NDL succeeds in modeling the German priming data by inspecting the extent to which a discrimination network pre-activates the target lexome from the orthographic properties of the prime. Measures derived from an NDL network, complemented with a semantic similarity measure derived from distributional semantics, predict lexical decision latencies with somewhat improved precision compared to classical measures, such as word frequency, prime type, and human association ratings. We discuss both the methodological implications of our results, as well as their implications for models of the mental lexicon.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
400 Sprachwissenschaft, Linguistik

Schlagwörter

morphological processing, naive discriminative learning, priming, semantic transparency, stem-based lexical access, complex verbs, morphological priming

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BAAYEN, R. Harald, Eva SMOLKA, 2020. Modeling Morphological Priming in German With Naive Discriminative Learning. In: Frontiers in Communication. Frontiers Media. 2020, 5, 17. eISSN 2297-900X. Available under: doi: 10.3389/fcomm.2020.00017
BibTex
@article{Baayen2020-04-08Model-50100,
  year={2020},
  doi={10.3389/fcomm.2020.00017},
  title={Modeling Morphological Priming in German With Naive Discriminative Learning},
  volume={5},
  journal={Frontiers in Communication},
  author={Baayen, R. Harald and Smolka, Eva},
  note={Article Number: 17}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50100">
    <dc:creator>Smolka, Eva</dc:creator>
    <dcterms:title>Modeling Morphological Priming in German With Naive Discriminative Learning</dcterms:title>
    <dcterms:abstract xml:lang="eng">Both localist and connectionist models, based on experimental results obtained for English and French, assume that the degree of semantic compositionality of a morphologically complex word is reflected in how it is processed. Since priming experiments using English and French morphologically related prime-target pairs reveal stronger priming when complex words are semantically transparent (e.g., refill–fill) compared to semantically more opaque pairs (e.g., restrain–strain), localist models set up connections between complex words and their stems only for semantically transparent pairs. Connectionist models have argued that the effect of transparency should arise as an epiphenomenon in PDP networks. However, for German, a series of studies has revealed equivalent priming for both transparent and opaque prime-target pairs, which suggests mediation of lexical access by the stem, independent of degrees of semantic compositionality. This study reports a priming experiment that replicates equivalent priming for transparent and opaque pairs. We show that these behavioral results can be straightforwardly modeled by a computational implementation of Word and Paradigm Morphology (WPM), Naive Discriminative Learning (NDL). Just as WPM, NDL eschews the theoretical construct of the morpheme. NDL succeeds in modeling the German priming data by inspecting the extent to which a discrimination network pre-activates the target lexome from the orthographic properties of the prime. Measures derived from an NDL network, complemented with a semantic similarity measure derived from distributional semantics, predict lexical decision latencies with somewhat improved precision compared to classical measures, such as word frequency, prime type, and human association ratings. We discuss both the methodological implications of our results, as well as their implications for models of the mental lexicon.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-02T11:25:55Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-02T11:25:55Z</dc:date>
    <dc:creator>Baayen, R. Harald</dc:creator>
    <dcterms:issued>2020-04-08</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Smolka, Eva</dc:contributor>
    <dc:contributor>Baayen, R. Harald</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50100"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50100/3/Baayen_2-1c7vxumxn36n60.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50100/3/Baayen_2-1c7vxumxn36n60.pdf"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen