Publikation: Information aggregation and collective intelligence beyond the wisdom of crowds
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In humans and other gregarious animals, collective decision-making is a robust behavioural feature of groups. Pooling individual information is also fundamental for modern societies, in which digital technologies have exponentially increased the interdependence of individual group members. In this Review, we selectively discuss the recent human and animal literature, focusing on cognitive and behavioural mechanisms that can yield collective intelligence beyond the wisdom of crowds. We distinguish between two group decision-making situations: consensus decision-making, in which a group consensus is required, and combined decision-making, in which a group consensus is not required. We show that in both group decision-making situations, cognitive and behavioural algorithms that capitalize on individual heterogeneity are the key for collective intelligence to emerge. These algorithms include accuracy or expertise-weighted aggregation of individual inputs and implicit or explicit coordination of cognition and behaviour towards division of labour. These mechanisms can be implemented either as ‘cognitive algebra’, executed mainly within the mind of an individual or by some arbitrating system, or as a dynamic behavioural aggregation through social interaction of individual group members. Finally, we discuss implications for collective decision-making in modern societies characterized by a fluid but auto-correlated flow of information and outline some future directions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAMEDA, Tatsuya, Wataru TOYOKAWA, R. Scott TINDALE, 2022. Information aggregation and collective intelligence beyond the wisdom of crowds. In: Nature Reviews Psychology. Springer Nature. 2022, 1(6), pp. 345-357. eISSN 2731-0574. Available under: doi: 10.1038/s44159-022-00054-yBibTex
@article{Kameda2022Infor-57670, year={2022}, doi={10.1038/s44159-022-00054-y}, title={Information aggregation and collective intelligence beyond the wisdom of crowds}, number={6}, volume={1}, journal={Nature Reviews Psychology}, pages={345--357}, author={Kameda, Tatsuya and Toyokawa, Wataru and Tindale, R. Scott} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57670"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Kameda, Tatsuya</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Toyokawa, Wataru</dc:creator> <dcterms:issued>2022</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57670"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Toyokawa, Wataru</dc:contributor> <dc:contributor>Tindale, R. Scott</dc:contributor> <dc:contributor>Kameda, Tatsuya</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-30T08:38:58Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:abstract xml:lang="eng">In humans and other gregarious animals, collective decision-making is a robust behavioural feature of groups. Pooling individual information is also fundamental for modern societies, in which digital technologies have exponentially increased the interdependence of individual group members. In this Review, we selectively discuss the recent human and animal literature, focusing on cognitive and behavioural mechanisms that can yield collective intelligence beyond the wisdom of crowds. We distinguish between two group decision-making situations: consensus decision-making, in which a group consensus is required, and combined decision-making, in which a group consensus is not required. We show that in both group decision-making situations, cognitive and behavioural algorithms that capitalize on individual heterogeneity are the key for collective intelligence to emerge. These algorithms include accuracy or expertise-weighted aggregation of individual inputs and implicit or explicit coordination of cognition and behaviour towards division of labour. These mechanisms can be implemented either as ‘cognitive algebra’, executed mainly within the mind of an individual or by some arbitrating system, or as a dynamic behavioural aggregation through social interaction of individual group members. Finally, we discuss implications for collective decision-making in modern societies characterized by a fluid but auto-correlated flow of information and outline some future directions.</dcterms:abstract> <dc:creator>Tindale, R. Scott</dc:creator> <dcterms:title>Information aggregation and collective intelligence beyond the wisdom of crowds</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-30T08:38:58Z</dc:date> </rdf:Description> </rdf:RDF>