Publikation:

Democracy and growth : evidence from a machine learning indicator

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

European Journal of Political Economy. 2016, 45(suppl.), pp. 85-107. ISSN 0176-2680. eISSN 1873-5703. Available under: doi: 10.1016/j.ejpoleco.2016.05.005

Zusammenfassung

We present a novel approach for measuring democracy based on Support Vector Machines, a mathematical algorithm for pattern recognition. The Support Vector Machines Democracy Index (SVMDI) is continuous on the [0,1] interval and enables very detailed and sensitive measurement of democracy for 185 countries in the period between 1981 and 2011. Application of the SVMDI yields results which highlight a robust positive relationship between democracy and economic growth. We argue that the ambiguity in recent studies mainly originates from the lack of sensitivity of traditional democracy indicators. Analyzing transmission channels through which democracy exerts its influence on growth, we conclude that democratic countries feature better educated populations, higher investment shares, and lower fertility rates, but not necessarily higher levels of redistribution.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Democracy Economic growth Panel data Machine learning Support Vector Machines

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRÜNDLER, Klaus, Tommy KRIEGER, 2016. Democracy and growth : evidence from a machine learning indicator. In: European Journal of Political Economy. 2016, 45(suppl.), pp. 85-107. ISSN 0176-2680. eISSN 1873-5703. Available under: doi: 10.1016/j.ejpoleco.2016.05.005
BibTex
@article{Grundler2016-12Democ-40446,
  year={2016},
  doi={10.1016/j.ejpoleco.2016.05.005},
  title={Democracy and growth : evidence from a machine learning indicator},
  number={suppl.},
  volume={45},
  issn={0176-2680},
  journal={European Journal of Political Economy},
  pages={85--107},
  author={Gründler, Klaus and Krieger, Tommy}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40446">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-28T09:15:44Z</dc:date>
    <dc:creator>Gründler, Klaus</dc:creator>
    <dc:creator>Krieger, Tommy</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40446"/>
    <dc:contributor>Gründler, Klaus</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Krieger, Tommy</dc:contributor>
    <dcterms:abstract xml:lang="eng">We present a novel approach for measuring democracy based on Support Vector Machines, a mathematical algorithm for pattern recognition. The Support Vector Machines Democracy Index (SVMDI) is continuous on the [0,1] interval and enables very detailed and sensitive measurement of democracy for 185 countries in the period between 1981 and 2011. Application of the SVMDI yields results which highlight a robust positive relationship between democracy and economic growth. We argue that the ambiguity in recent studies mainly originates from the lack of sensitivity of traditional democracy indicators. Analyzing transmission channels through which democracy exerts its influence on growth, we conclude that democratic countries feature better educated populations, higher investment shares, and lower fertility rates, but not necessarily higher levels of redistribution.</dcterms:abstract>
    <dcterms:issued>2016-12</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-28T09:15:44Z</dcterms:available>
    <dcterms:title>Democracy and growth : evidence from a machine learning indicator</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen