Publikation: Positivity of continuous piecewise polynomials
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Bulletin of the London Mathematical Society. Wiley. 2012, 44(4), pp. 749-757. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bds007
Zusammenfassung
Real algebraic geometry provides certificates for the positivity of polynomials on semialgebraic sets by expressing them as a suitable combination of sums of squares and the defining inequalities. We show how Putinar's theorem for strictly positive polynomials on compact sets can be applied in the case of strictly positive piecewise polynomials on a simplicial complex. In the one‐dimensional case, we improve this result to cover all non‐negative piecewise polynomials and give explicit degree bounds.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
PLAUMANN, Daniel, 2012. Positivity of continuous piecewise polynomials. In: Bulletin of the London Mathematical Society. Wiley. 2012, 44(4), pp. 749-757. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bds007BibTex
@article{Plaumann2012Posit-48959, year={2012}, doi={10.1112/blms/bds007}, title={Positivity of continuous piecewise polynomials}, number={4}, volume={44}, issn={0024-6093}, journal={Bulletin of the London Mathematical Society}, pages={749--757}, author={Plaumann, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48959"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-06T08:09:27Z</dc:date> <dcterms:title>Positivity of continuous piecewise polynomials</dcterms:title> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48959"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-06T08:09:27Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Plaumann, Daniel</dc:creator> <dcterms:abstract xml:lang="eng">Real algebraic geometry provides certificates for the positivity of polynomials on semialgebraic sets by expressing them as a suitable combination of sums of squares and the defining inequalities. We show how Putinar's theorem for strictly positive polynomials on compact sets can be applied in the case of strictly positive piecewise polynomials on a simplicial complex. In the one‐dimensional case, we improve this result to cover all non‐negative piecewise polynomials and give explicit degree bounds.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Plaumann, Daniel</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2012</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja