Publikation:

Positivity of continuous piecewise polynomials

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Bulletin of the London Mathematical Society. Wiley. 2012, 44(4), pp. 749-757. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bds007

Zusammenfassung

Real algebraic geometry provides certificates for the positivity of polynomials on semialgebraic sets by expressing them as a suitable combination of sums of squares and the defining inequalities. We show how Putinar's theorem for strictly positive polynomials on compact sets can be applied in the case of strictly positive piecewise polynomials on a simplicial complex. In the one‐dimensional case, we improve this result to cover all non‐negative piecewise polynomials and give explicit degree bounds.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PLAUMANN, Daniel, 2012. Positivity of continuous piecewise polynomials. In: Bulletin of the London Mathematical Society. Wiley. 2012, 44(4), pp. 749-757. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bds007
BibTex
@article{Plaumann2012Posit-48959,
  year={2012},
  doi={10.1112/blms/bds007},
  title={Positivity of continuous piecewise polynomials},
  number={4},
  volume={44},
  issn={0024-6093},
  journal={Bulletin of the London Mathematical Society},
  pages={749--757},
  author={Plaumann, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48959">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-06T08:09:27Z</dc:date>
    <dcterms:title>Positivity of continuous piecewise polynomials</dcterms:title>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48959"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-06T08:09:27Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Plaumann, Daniel</dc:creator>
    <dcterms:abstract xml:lang="eng">Real algebraic geometry provides certificates for the positivity of polynomials on semialgebraic sets by expressing them as a suitable combination of sums of squares and the defining inequalities. We show how Putinar's theorem for strictly positive polynomials on compact sets can be applied in the case of strictly positive piecewise polynomials on a simplicial complex. In the one‐dimensional case, we improve this result to cover all non‐negative piecewise polynomials and give explicit degree bounds.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Plaumann, Daniel</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2012</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen