Publikation:

Using Machine Learning for measuring democracy : A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019

Lade...
Vorschaubild

Dateien

Gruendler_2-1cs2m6a9teu4p8.pdf
Gruendler_2-1cs2m6a9teu4p8.pdfGröße: 1.21 MBDownloads: 17

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

European Journal of Political Economy. Elsevier. 2021, 70, 102047. ISSN 0176-2680. eISSN 1873-5703. Verfügbar unter: doi: 10.1016/j.ejpoleco.2021.102047

Zusammenfassung

We provide a comprehensive overview of the literature on the measurement of democracy and present an extensive update of the Machine Learning indicator of Gründler and Krieger (2016). Four improvements are particularly notable: First, we produce a continuous and a dichotomous version of the Machine Learning democracy indicator. Second, we calculate intervals that reflect the degree of measurement uncertainty. Third, we refine the conceptualization of the Machine Learning Index. Finally, we significantly expand the data coverage by providing democracy indices for 186 countries in the period from 1919 to 2019.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Data aggregation, Democracy indicators, Machine learning, Measurement issues, Regime classification, Support vector machines

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRÜNDLER, Klaus, Tommy KRIEGER, 2021. Using Machine Learning for measuring democracy : A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019. In: European Journal of Political Economy. Elsevier. 2021, 70, 102047. ISSN 0176-2680. eISSN 1873-5703. Verfügbar unter: doi: 10.1016/j.ejpoleco.2021.102047
BibTex
@article{Grundler2021-12Using-69380,
  year={2021},
  doi={10.1016/j.ejpoleco.2021.102047},
  title={Using Machine Learning for measuring democracy : A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019},
  volume={70},
  issn={0176-2680},
  journal={European Journal of Political Economy},
  author={Gründler, Klaus and Krieger, Tommy},
  note={Article Number: 102047}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69380">
    <dc:creator>Krieger, Tommy</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69380/4/Gruendler_2-1cs2m6a9teu4p8.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Krieger, Tommy</dc:contributor>
    <dcterms:issued>2021-12</dcterms:issued>
    <dc:contributor>Gründler, Klaus</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69380/4/Gruendler_2-1cs2m6a9teu4p8.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69380"/>
    <dcterms:title>Using Machine Learning for measuring democracy : A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019</dcterms:title>
    <dcterms:abstract>We provide a comprehensive overview of the literature on the measurement of democracy and present an extensive update of the Machine Learning indicator of Gründler and Krieger (2016). Four improvements are particularly notable: First, we produce a continuous and a dichotomous version of the Machine Learning democracy indicator. Second, we calculate intervals that reflect the degree of measurement uncertainty. Third, we refine the conceptualization of the Machine Learning Index. Finally, we significantly expand the data coverage by providing democracy indices for 186 countries in the period from 1919 to 2019.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-22T08:46:58Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-22T08:46:58Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:creator>Gründler, Klaus</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen