Publikation: Using Machine Learning for measuring democracy : A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019
Lade...
Dateien
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
European Journal of Political Economy. Elsevier. 2021, 70, 102047. ISSN 0176-2680. eISSN 1873-5703. Verfügbar unter: doi: 10.1016/j.ejpoleco.2021.102047
Zusammenfassung
We provide a comprehensive overview of the literature on the measurement of democracy and present an extensive update of the Machine Learning indicator of Gründler and Krieger (2016). Four improvements are particularly notable: First, we produce a continuous and a dichotomous version of the Machine Learning democracy indicator. Second, we calculate intervals that reflect the degree of measurement uncertainty. Third, we refine the conceptualization of the Machine Learning Index. Finally, we significantly expand the data coverage by providing democracy indices for 186 countries in the period from 1919 to 2019.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
Data aggregation, Democracy indicators, Machine learning, Measurement issues, Regime classification, Support vector machines
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
GRÜNDLER, Klaus, Tommy KRIEGER, 2021. Using Machine Learning for measuring democracy : A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019. In: European Journal of Political Economy. Elsevier. 2021, 70, 102047. ISSN 0176-2680. eISSN 1873-5703. Verfügbar unter: doi: 10.1016/j.ejpoleco.2021.102047BibTex
@article{Grundler2021-12Using-69380, year={2021}, doi={10.1016/j.ejpoleco.2021.102047}, title={Using Machine Learning for measuring democracy : A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019}, volume={70}, issn={0176-2680}, journal={European Journal of Political Economy}, author={Gründler, Klaus and Krieger, Tommy}, note={Article Number: 102047} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69380"> <dc:creator>Krieger, Tommy</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69380/4/Gruendler_2-1cs2m6a9teu4p8.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Krieger, Tommy</dc:contributor> <dcterms:issued>2021-12</dcterms:issued> <dc:contributor>Gründler, Klaus</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69380/4/Gruendler_2-1cs2m6a9teu4p8.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69380"/> <dcterms:title>Using Machine Learning for measuring democracy : A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019</dcterms:title> <dcterms:abstract>We provide a comprehensive overview of the literature on the measurement of democracy and present an extensive update of the Machine Learning indicator of Gründler and Krieger (2016). Four improvements are particularly notable: First, we produce a continuous and a dichotomous version of the Machine Learning democracy indicator. Second, we calculate intervals that reflect the degree of measurement uncertainty. Third, we refine the conceptualization of the Machine Learning Index. Finally, we significantly expand the data coverage by providing democracy indices for 186 countries in the period from 1919 to 2019.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-22T08:46:58Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-22T08:46:58Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:creator>Gründler, Klaus</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja