Publikation:

Coarse-grained variables for particle-based models : diffusion maps and animal swarming simulations

Lade...
Vorschaubild

Dateien

Liu_0-290982.pdf
Liu_0-290982.pdfGröße: 1.98 MBDownloads: 226

Datum

2014

Autor:innen

Liu, Ping
Safford, Hannah R.
Kevrekidis, Ioannis G.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computational Particle Mechanics. 2014, 1(4), pp. 425-440. ISSN 2196-4378. eISSN 2196-4386. Available under: doi: 10.1007/s40571-014-0030-7

Zusammenfassung

As microscopic (e.g. atomistic, stochastic, agent-based, particle-based) simulations become increasingly prevalent in the modeling of complex systems, so does the need to systematically coarse-grain the information they provide. Before even starting to formulate relevant coarse-grained equations, we need to determine the right macroscopic observables—the right variables in terms of which emergent behavior will be described. This paper illustrates the use of data mining (and, in particular, diffusion maps, a nonlinear manifold learning technique) in coarse-graining the dynamics of a particle-based model of animal swarming. Our computational data-driven coarse-graining approach extracts two coarse (collective) variables from the detailed particle-based simulations, and helps formulate a low-dimensional stochastic differential equation in terms of these two collective variables; this allows the efficient quantification of the interplay of “informed” and “naive” individuals in the collective swarm dynamics. We also present a brief exploration of swarm breakup and use data-mining in an attempt to identify useful predictors for it. In our discussion of the scope and limitations of the approach we focus on the key step of selecting an informative metric, allowing us to usefully compare different particle swarm configurations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LIU, Ping, Hannah R. SAFFORD, Iain D. COUZIN, Ioannis G. KEVREKIDIS, 2014. Coarse-grained variables for particle-based models : diffusion maps and animal swarming simulations. In: Computational Particle Mechanics. 2014, 1(4), pp. 425-440. ISSN 2196-4378. eISSN 2196-4386. Available under: doi: 10.1007/s40571-014-0030-7
BibTex
@article{Liu2014Coars-31324,
  year={2014},
  doi={10.1007/s40571-014-0030-7},
  title={Coarse-grained variables for particle-based models : diffusion maps and animal swarming simulations},
  number={4},
  volume={1},
  issn={2196-4378},
  journal={Computational Particle Mechanics},
  pages={425--440},
  author={Liu, Ping and Safford, Hannah R. and Couzin, Iain D. and Kevrekidis, Ioannis G.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31324">
    <dc:creator>Liu, Ping</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Liu, Ping</dc:contributor>
    <dc:creator>Safford, Hannah R.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Coarse-grained variables for particle-based models : diffusion maps and animal swarming simulations</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-01T03:15:11Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">As microscopic (e.g. atomistic, stochastic, agent-based, particle-based) simulations become increasingly prevalent in the modeling of complex systems, so does the need to systematically coarse-grain the information they provide. Before even starting to formulate relevant coarse-grained equations, we need to determine the right macroscopic observables—the right variables in terms of which emergent behavior will be described. This paper illustrates the use of data mining (and, in particular, diffusion maps, a nonlinear manifold learning technique) in coarse-graining the dynamics of a particle-based model of animal swarming. Our computational data-driven coarse-graining approach extracts two coarse (collective) variables from the detailed particle-based simulations, and helps formulate a low-dimensional stochastic differential equation in terms of these two collective variables; this allows the efficient quantification of the interplay of “informed” and “naive” individuals in the collective swarm dynamics. We also present a brief exploration of swarm breakup and use data-mining in an attempt to identify useful predictors for it. In our discussion of the scope and limitations of the approach we focus on the key step of selecting an informative metric, allowing us to usefully compare different particle swarm configurations.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31324"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-01T03:15:11Z</dc:date>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Kevrekidis, Ioannis G.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Safford, Hannah R.</dc:contributor>
    <dc:contributor>Kevrekidis, Ioannis G.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31324/1/Liu_0-290982.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31324/1/Liu_0-290982.pdf"/>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dc:contributor>Couzin, Iain D.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen