Publikation:

Visual Analysis of RNAseq Data : Discovering Genes in Bacteria

Lade...
Vorschaubild

Dateien

Simon_0-312332.pdf
Simon_0-312332.pdfGröße: 15.67 MBDownloads: 617

Datum

2015

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Finding new overlapping genes and their theory (FOG-Theory), Projekt im SPP Informations- und Kommunikationstheorie in der Molekularbiologie (InKoMBio)
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

RNA sequencing (RNAseq) using next-generation-sequencing (NGS) technologies allows, nowadays, to produce transcriptomic data in a high throughput fashion. However, the analysis of these large and complex biological data sets remains a great challenge. This analysis is highly of explanatory nature and requires to constantly connect observations with implicit domain knowledge. This requires interactive visual analysis systems and an expert user in the analysis loop. The challenge of designing interactive visual analysis systems for the analysis of RNAseq data demands interdisciplinary research at the interface between molecular biology and visual data analysis. However, the epistemic distance between both fields is typically very high and, therefore, knowledge gaps and interdisciplinary communication issues hamper effective collaboration. In order to bridge the knowledge gap between domain and visualization experts, I introduce the Liaison role for problem-driven research in the visualization domain which fosters a better and richer interdisciplinary communication. In this thesis, I contribute a problem characterization and task descriptions to discover and describe genes using RNAseq data. Based on the problem characterization, I identify two research gaps: First, assessing the trustworthiness of RNAseq data in the analysis and, second, discovering and relating genes to identify their functions. With the systems NGS Overlap Searcher and VisExpress, I present two visual analysis solutions that address these research gaps. Furthermore, I evaluate and apply both systems on real data sets with real experts leading to important insights for the biological domain as well as for problem-driven visualization research.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SIMON, Svenja, 2015. Visual Analysis of RNAseq Data : Discovering Genes in Bacteria [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Simon2015Visua-32447,
  year={2015},
  title={Visual Analysis of RNAseq Data : Discovering Genes in Bacteria},
  author={Simon, Svenja},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32447">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32447/3/Simon_0-312332.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-16T12:33:52Z</dcterms:available>
    <dc:creator>Simon, Svenja</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32447/3/Simon_0-312332.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Visual Analysis of RNAseq Data : Discovering Genes in Bacteria</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-16T12:33:52Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32447"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">RNA sequencing (RNAseq) using next-generation-sequencing (NGS) technologies allows, nowadays, to produce transcriptomic data in a high throughput fashion. However, the analysis of these large and complex biological data sets remains a great challenge. This analysis is highly of explanatory nature and requires to constantly connect observations with implicit domain knowledge. This requires interactive visual analysis systems and an expert user in the analysis loop. The challenge of designing interactive visual analysis systems for the analysis of RNAseq data demands interdisciplinary research at the interface between molecular biology and visual data analysis. However, the epistemic distance between both fields is typically very high and, therefore, knowledge gaps and interdisciplinary communication issues hamper effective collaboration. In order to bridge the knowledge gap between domain and visualization experts, I introduce the Liaison role for problem-driven research in the visualization domain which fosters a better and richer interdisciplinary communication. In this thesis, I contribute a problem characterization and task descriptions to discover and describe genes using RNAseq data. Based on the problem characterization, I identify two research gaps: First, assessing the trustworthiness of RNAseq data in the analysis and, second, discovering and relating genes to identify their functions. With the systems NGS Overlap Searcher and VisExpress, I present two visual analysis solutions that address these research gaps. Furthermore, I evaluate and apply both systems on real data sets with real experts leading to important insights for the biological domain as well as for problem-driven visualization research.</dcterms:abstract>
    <dcterms:issued>2015</dcterms:issued>
    <dc:contributor>Simon, Svenja</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

July 17, 2015
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2015
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen