Publikation: Duality for increasing convex functionals with countably many marginal constraints
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Banach Journal of Mathematical Analysis. 2017, 11(1), pp. 72-89. eISSN 1735-8787. Available under: doi: 10.1215/17358787-3750133
Zusammenfassung
In this work we derive a convex dual representation for increasing convex functionals on a space of real-valued Borel measurable functions defined on a countable product of metric spaces. Our main assumption is that the functionals fulfill marginal constraints satisfying a certain tightness condition. In the special case where the marginal constraints are given by expectations or maxima of expectations, we obtain linear and sublinear versions of Kantorovich’s transport duality and the recently discovered martingale transport duality on products of countably many metric spaces.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BARTL, Daniel, Patrick CHERIDITO, Michael KUPPER, Ludovic TANGPI, 2017. Duality for increasing convex functionals with countably many marginal constraints. In: Banach Journal of Mathematical Analysis. 2017, 11(1), pp. 72-89. eISSN 1735-8787. Available under: doi: 10.1215/17358787-3750133BibTex
@article{Bartl2017-01Duali-38797, year={2017}, doi={10.1215/17358787-3750133}, title={Duality for increasing convex functionals with countably many marginal constraints}, number={1}, volume={11}, journal={Banach Journal of Mathematical Analysis}, pages={72--89}, author={Bartl, Daniel and Cheridito, Patrick and Kupper, Michael and Tangpi, Ludovic} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38797"> <dcterms:issued>2017-01</dcterms:issued> <dc:creator>Bartl, Daniel</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Kupper, Michael</dc:contributor> <dcterms:title>Duality for increasing convex functionals with countably many marginal constraints</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-09T08:47:28Z</dc:date> <dc:creator>Cheridito, Patrick</dc:creator> <dc:creator>Tangpi, Ludovic</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38797"/> <dc:contributor>Cheridito, Patrick</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Bartl, Daniel</dc:contributor> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-09T08:47:28Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">In this work we derive a convex dual representation for increasing convex functionals on a space of real-valued Borel measurable functions defined on a countable product of metric spaces. Our main assumption is that the functionals fulfill marginal constraints satisfying a certain tightness condition. In the special case where the marginal constraints are given by expectations or maxima of expectations, we obtain linear and sublinear versions of Kantorovich’s transport duality and the recently discovered martingale transport duality on products of countably many metric spaces.</dcterms:abstract> <dc:creator>Kupper, Michael</dc:creator> <dc:contributor>Tangpi, Ludovic</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja