Publikation:

Duality for increasing convex functionals with countably many marginal constraints

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Banach Journal of Mathematical Analysis. 2017, 11(1), pp. 72-89. eISSN 1735-8787. Available under: doi: 10.1215/17358787-3750133

Zusammenfassung

In this work we derive a convex dual representation for increasing convex functionals on a space of real-valued Borel measurable functions defined on a countable product of metric spaces. Our main assumption is that the functionals fulfill marginal constraints satisfying a certain tightness condition. In the special case where the marginal constraints are given by expectations or maxima of expectations, we obtain linear and sublinear versions of Kantorovich’s transport duality and the recently discovered martingale transport duality on products of countably many metric spaces.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BARTL, Daniel, Patrick CHERIDITO, Michael KUPPER, Ludovic TANGPI, 2017. Duality for increasing convex functionals with countably many marginal constraints. In: Banach Journal of Mathematical Analysis. 2017, 11(1), pp. 72-89. eISSN 1735-8787. Available under: doi: 10.1215/17358787-3750133
BibTex
@article{Bartl2017-01Duali-38797,
  year={2017},
  doi={10.1215/17358787-3750133},
  title={Duality for increasing convex functionals with countably many marginal constraints},
  number={1},
  volume={11},
  journal={Banach Journal of Mathematical Analysis},
  pages={72--89},
  author={Bartl, Daniel and Cheridito, Patrick and Kupper, Michael and Tangpi, Ludovic}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38797">
    <dcterms:issued>2017-01</dcterms:issued>
    <dc:creator>Bartl, Daniel</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <dcterms:title>Duality for increasing convex functionals with countably many marginal constraints</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-09T08:47:28Z</dc:date>
    <dc:creator>Cheridito, Patrick</dc:creator>
    <dc:creator>Tangpi, Ludovic</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38797"/>
    <dc:contributor>Cheridito, Patrick</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Bartl, Daniel</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-09T08:47:28Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">In this work we derive a convex dual representation for increasing convex functionals on a space of real-valued Borel measurable functions defined on a countable product of metric spaces. Our main assumption is that the functionals fulfill marginal constraints satisfying a certain tightness condition. In the special case where the marginal constraints are given by expectations or maxima of expectations, we obtain linear and sublinear versions of Kantorovich’s transport duality and the recently discovered martingale transport duality on products of countably many metric spaces.</dcterms:abstract>
    <dc:creator>Kupper, Michael</dc:creator>
    <dc:contributor>Tangpi, Ludovic</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen