Publikation: Estimating high-frequency based (co-)variances : a unified approach
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose a unified framework for estimating integrated variances and covariances based on simple OLS regressions, allowing for a general market microstructure noise specification. We show that our estimators can outperform in terms of the root mean squared error criterion the most recent and commonly applied estimators, such as the realized kernels of Barndorff-Nielsen, Hansen, Lunde & Shephard (2006), the two-scales realized variance of Zhang, Mykland & Ait-Sahalia (2005), the Hayashi & Yoshida (2005) covariance estimator, and the realized variance and covariance with the optimal sampling frequency chosen after Bandi & Russell (2005a) and Bandi & Russell (2005b). The power of our methodology stems from the fact that instead of trying to correct the realized quantities for the noise, we identify both the true underlying integrated moments and the moments of the noise, which are also estimated within our framework. Apart from being simple to implement, an important property of our estimators is that they are quite robust to misspecifications of the noise process.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NOLTE, Ingmar, Valeri VOEV, 2007. Estimating high-frequency based (co-)variances : a unified approachBibTex
@techreport{Nolte2007Estim-12235, year={2007}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Estimating high-frequency based (co-)variances : a unified approach}, number={2007/07}, author={Nolte, Ingmar and Voev, Valeri} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12235"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:43:40Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:43:40Z</dc:date> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:contributor>Nolte, Ingmar</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12235/1/dp07_07.pdf"/> <dc:contributor>Voev, Valeri</dc:contributor> <dc:creator>Voev, Valeri</dc:creator> <dcterms:issued>2007</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:creator>Nolte, Ingmar</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Estimating high-frequency based (co-)variances : a unified approach</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12235/1/dp07_07.pdf"/> <dcterms:abstract xml:lang="eng">We propose a unified framework for estimating integrated variances and covariances based on simple OLS regressions, allowing for a general market microstructure noise specification. We show that our estimators can outperform in terms of the root mean squared error criterion the most recent and commonly applied estimators, such as the realized kernels of Barndorff-Nielsen, Hansen, Lunde & Shephard (2006), the two-scales realized variance of Zhang, Mykland & Ait-Sahalia (2005), the Hayashi & Yoshida (2005) covariance estimator, and the realized variance and covariance with the optimal sampling frequency chosen after Bandi & Russell (2005a) and Bandi & Russell (2005b). The power of our methodology stems from the fact that instead of trying to correct the realized quantities for the noise, we identify both the true underlying integrated moments and the moments of the noise, which are also estimated within our framework. Apart from being simple to implement, an important property of our estimators is that they are quite robust to misspecifications of the noise process.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12235"/> <dc:format>application/pdf</dc:format> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> </rdf:Description> </rdf:RDF>