Publikation:

Topological Equivalence between the Fibonacci Quasicrystal and the Harper Model

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Kraus, Yaacov E.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review Letters. American Physical Society (APS). 2012, 109(11), 116404. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.109.116404

Zusammenfassung

One-dimensional quasiperiodic systems, such as the Harper model and the Fibonacci quasicrystal, have long been the focus of extensive theoretical and experimental research. Recently, the Harper model was found to be topologically nontrivial. Here, we derive a general model that embodies a continuous deformation between these seemingly unrelated models. We show that this deformation does not close any bulk gaps, and thus prove that these models are in fact topologically equivalent. Remarkably, they are equivalent regardless of whether the quasiperiodicity appears as an on-site or hopping modulation. This proves that these different models share the same boundary phenomena and explains past measurements. We generalize this equivalence to any Fibonacci-like quasicrystal, i.e., a cut and project in any irrational angle.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRAUS, Yaacov E., Oded ZILBERBERG, 2012. Topological Equivalence between the Fibonacci Quasicrystal and the Harper Model. In: Physical Review Letters. American Physical Society (APS). 2012, 109(11), 116404. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.109.116404
BibTex
@article{Kraus2012-09-14Topol-54919,
  year={2012},
  doi={10.1103/PhysRevLett.109.116404},
  title={Topological Equivalence between the Fibonacci Quasicrystal and the Harper Model},
  number={11},
  volume={109},
  issn={0031-9007},
  journal={Physical Review Letters},
  author={Kraus, Yaacov E. and Zilberberg, Oded},
  note={Article Number: 116404}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54919">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-21T09:01:16Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-21T09:01:16Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:contributor>Zilberberg, Oded</dc:contributor>
    <dc:creator>Kraus, Yaacov E.</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">One-dimensional quasiperiodic systems, such as the Harper model and the Fibonacci quasicrystal, have long been the focus of extensive theoretical and experimental research. Recently, the Harper model was found to be topologically nontrivial. Here, we derive a general model that embodies a continuous deformation between these seemingly unrelated models. We show that this deformation does not close any bulk gaps, and thus prove that these models are in fact topologically equivalent. Remarkably, they are equivalent regardless of whether the quasiperiodicity appears as an on-site or hopping modulation. This proves that these different models share the same boundary phenomena and explains past measurements. We generalize this equivalence to any Fibonacci-like quasicrystal, i.e., a cut and project in any irrational angle.</dcterms:abstract>
    <dcterms:issued>2012-09-14</dcterms:issued>
    <dcterms:title>Topological Equivalence between the Fibonacci Quasicrystal and the Harper Model</dcterms:title>
    <dc:creator>Zilberberg, Oded</dc:creator>
    <dc:contributor>Kraus, Yaacov E.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54919"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen