Publikation: Topological Equivalence between the Fibonacci Quasicrystal and the Harper Model
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
One-dimensional quasiperiodic systems, such as the Harper model and the Fibonacci quasicrystal, have long been the focus of extensive theoretical and experimental research. Recently, the Harper model was found to be topologically nontrivial. Here, we derive a general model that embodies a continuous deformation between these seemingly unrelated models. We show that this deformation does not close any bulk gaps, and thus prove that these models are in fact topologically equivalent. Remarkably, they are equivalent regardless of whether the quasiperiodicity appears as an on-site or hopping modulation. This proves that these different models share the same boundary phenomena and explains past measurements. We generalize this equivalence to any Fibonacci-like quasicrystal, i.e., a cut and project in any irrational angle.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KRAUS, Yaacov E., Oded ZILBERBERG, 2012. Topological Equivalence between the Fibonacci Quasicrystal and the Harper Model. In: Physical Review Letters. American Physical Society (APS). 2012, 109(11), 116404. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.109.116404BibTex
@article{Kraus2012-09-14Topol-54919, year={2012}, doi={10.1103/PhysRevLett.109.116404}, title={Topological Equivalence between the Fibonacci Quasicrystal and the Harper Model}, number={11}, volume={109}, issn={0031-9007}, journal={Physical Review Letters}, author={Kraus, Yaacov E. and Zilberberg, Oded}, note={Article Number: 116404} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54919"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-21T09:01:16Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-21T09:01:16Z</dc:date> <dc:language>eng</dc:language> <dc:contributor>Zilberberg, Oded</dc:contributor> <dc:creator>Kraus, Yaacov E.</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">One-dimensional quasiperiodic systems, such as the Harper model and the Fibonacci quasicrystal, have long been the focus of extensive theoretical and experimental research. Recently, the Harper model was found to be topologically nontrivial. Here, we derive a general model that embodies a continuous deformation between these seemingly unrelated models. We show that this deformation does not close any bulk gaps, and thus prove that these models are in fact topologically equivalent. Remarkably, they are equivalent regardless of whether the quasiperiodicity appears as an on-site or hopping modulation. This proves that these different models share the same boundary phenomena and explains past measurements. We generalize this equivalence to any Fibonacci-like quasicrystal, i.e., a cut and project in any irrational angle.</dcterms:abstract> <dcterms:issued>2012-09-14</dcterms:issued> <dcterms:title>Topological Equivalence between the Fibonacci Quasicrystal and the Harper Model</dcterms:title> <dc:creator>Zilberberg, Oded</dc:creator> <dc:contributor>Kraus, Yaacov E.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54919"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> </rdf:Description> </rdf:RDF>