Models of true arithmetic are integer parts of models of real exponentation

Loading...
Thumbnail Image
Date
2021
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Journal of Logic and Analysis ; (2021), 13. - 3. - Department of Philosophy, Carnegie Mellon University. - ISSN 1759-9008
Abstract
Exploring further the connection between exponentiation on real closed fields and the existence of an integer part modelling strong fragments of arithmetic, we demonstrate that each model of true arithmetic is an integer part of an exponential real closed field that is elementarily equivalent to the real numbers with exponentiation and that each model of Peano arithmetic is an integer part of a real closed field that admits an isomorphism between its ordered additive and its ordered multiplicative group of positive elements. Under the assumption of Schanuel’s Conjecture, we obtain further strengthenings for the last statement.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
true arithmetic, Peano arithmetic; integer parts; real exponentiation; exponential fields
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690CARL, Merlin, Lothar Sebastian KRAPP, 2021. Models of true arithmetic are integer parts of models of real exponentation. In: Journal of Logic and Analysis. Department of Philosophy, Carnegie Mellon University. (13), 3. ISSN 1759-9008. Available under: doi: 10.4115/jla.2021.13.3
BibTex
@article{Carl2021Model-54344,
  year={2021},
  doi={10.4115/jla.2021.13.3},
  title={Models of true arithmetic are integer parts of models of real exponentation},
  number={13},
  volume={},
  issn={1759-9008},
  journal={Journal of Logic and Analysis},
  author={Carl, Merlin and Krapp, Lothar Sebastian},
  note={Article Number: 3}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54344">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54344/3/Krapp_2-1dezh6kqr1uhq7.pdf"/>
    <dc:contributor>Carl, Merlin</dc:contributor>
    <dcterms:title>Models of true arithmetic are integer parts of models of real exponentation</dcterms:title>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-19T08:14:39Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54344"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Krapp, Lothar Sebastian</dc:creator>
    <dcterms:abstract xml:lang="eng">Exploring further the connection between exponentiation on real closed fields and the existence of an integer part modelling strong fragments of arithmetic, we demonstrate that each model of true arithmetic is an integer part of an exponential real closed field that is elementarily equivalent to the real numbers with exponentiation and that each model of Peano arithmetic is an integer part of a real closed field that admits an isomorphism between its ordered additive and its ordered multiplicative group of positive elements. Under the assumption of Schanuel’s Conjecture, we obtain further strengthenings for the last statement.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-19T08:14:39Z</dcterms:available>
    <dc:creator>Carl, Merlin</dc:creator>
    <dcterms:issued>2021</dcterms:issued>
    <dc:contributor>Krapp, Lothar Sebastian</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54344/3/Krapp_2-1dezh6kqr1uhq7.pdf"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown