Publikation: Distributed Mining of Molecular Fragments
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In real world applications sequential algorithms of data mining and data exploration are often unsuitable for datasets with enormous size, high-dimensionality and complex data structure. Grid computing promises unprecedented opportunities for unlimited computing and storage resources. In this context there is the necessity to develop high performance distributed data mining algorithms. However, the computational complexity of the problem and the large amount of data to be explored often make the design of large scale applications particularly challenging. In this paper we present the first distributed formulation of a frequent subgraph mining algorithm for discriminative fragments of molecular compounds. Two distributed approaches have been developed and compared on the wellknown National Cancer Institute’s HIV-screening dataset. We present experimental results on a small-scale computing environment.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DI FATTA, Giuseppe, Michael R. BERTHOLD, 2004. Distributed Mining of Molecular Fragments. Data Mining and Grid of IEEE ICDM. Brighton, UK, 1. Nov. 2004 - 4. Nov. 2004. In: DMGrid 2004, Workshop on Data Mining and Grid of IEEE ICDM 2004, International Conference on Data Mining, Brighton (UK), November 1 - 4, 2004. 2004BibTex
@inproceedings{DiFatta2004Distr-24150, year={2004}, title={Distributed Mining of Molecular Fragments}, booktitle={DMGrid 2004, Workshop on Data Mining and Grid of IEEE ICDM 2004, International Conference on Data Mining, Brighton (UK), November 1 - 4, 2004}, author={Di Fatta, Giuseppe and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24150"> <dc:creator>Di Fatta, Giuseppe</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-30T06:15:18Z</dcterms:available> <dcterms:issued>2004</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-30T06:15:18Z</dc:date> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24150/1/Fatta_241506.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>DMGrid 2004, Workshop on Data Mining and Grid of IEEE ICDM 2004, International Conference on Data Mining, Brighton (UK), November 1 - 4, 2004</dcterms:bibliographicCitation> <dc:contributor>Di Fatta, Giuseppe</dc:contributor> <dcterms:abstract xml:lang="eng">In real world applications sequential algorithms of data mining and data exploration are often unsuitable for datasets with enormous size, high-dimensionality and complex data structure. Grid computing promises unprecedented opportunities for unlimited computing and storage resources. In this context there is the necessity to develop high performance distributed data mining algorithms. However, the computational complexity of the problem and the large amount of data to be explored often make the design of large scale applications particularly challenging. In this paper we present the first distributed formulation of a frequent subgraph mining algorithm for discriminative fragments of molecular compounds. Two distributed approaches have been developed and compared on the wellknown National Cancer Institute’s HIV-screening dataset. We present experimental results on a small-scale computing environment.</dcterms:abstract> <dcterms:title>Distributed Mining of Molecular Fragments</dcterms:title> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24150/1/Fatta_241506.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24150"/> </rdf:Description> </rdf:RDF>