Publikation:

Efficient anti-community detection in complex networks

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Lackner, Sebastian
Weidemüller, Matthias
Gertz, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

SSDBM '18 : Proceedings of the 30th International Conference on Scientific and Statistical Database Management. New York, NY: ACM, 2018, 16. ISBN 978-1-4503-6505-5. Available under: doi: 10.1145/3221269.3221289

Zusammenfassung

Modeling the relations between the components of complex systems as networks of vertices and edges is a commonly used method in many scientific disciplines that serves to obtain a deeper understanding of the systems themselves. In particular, the detection of densely connected communities in these networks is frequently used to identify functionally related components, such as social circles in networks of personal relations or interactions between agents in biological networks. Traditionally, communities are considered to have a high density of internal connections, combined with a low density of external edges between different communities. However, not all naturally occurring communities in complex networks are characterized by this notion of structural equivalence, such as groups of energy states with shared quantum numbers in networks of spectral line transitions. In this paper, we focus on this inverse task of detecting anti-communities that are characterized by an exceptionally low density of internal connections and a high density of external connections. While anti-communities have been discussed in the literature for anecdotal applications or as a modification of traditional community detection, no rigorous investigation of algorithms for the problem has been presented. To this end, we introduce and discuss a broad range of possible approaches and evaluate them with regard to efficiency and effectiveness on a range of real-world and synthetic networks. Furthermore, we show that the presence of a community and anti-community structure are not mutually exclusive, and that even networks with a strong traditional community structure may also contain anti-communities.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

community detection; graph algorithms; hierarchical clustering

Konferenz

SSDBM ’18: 30th International Conference on Scientific and Statistical Database Management, 9. Juli 2018 - 11. Juli 2018, Bozen-Bolzano, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LACKNER, Sebastian, Andreas SPITZ, Matthias WEIDEMÜLLER, Michael GERTZ, 2018. Efficient anti-community detection in complex networks. SSDBM ’18: 30th International Conference on Scientific and Statistical Database Management. Bozen-Bolzano, Italy, 9. Juli 2018 - 11. Juli 2018. In: SSDBM '18 : Proceedings of the 30th International Conference on Scientific and Statistical Database Management. New York, NY: ACM, 2018, 16. ISBN 978-1-4503-6505-5. Available under: doi: 10.1145/3221269.3221289
BibTex
@inproceedings{Lackner2018Effic-55682,
  year={2018},
  doi={10.1145/3221269.3221289},
  title={Efficient anti-community detection in complex networks},
  isbn={978-1-4503-6505-5},
  publisher={ACM},
  address={New York, NY},
  booktitle={SSDBM '18 : Proceedings of the 30th International Conference on Scientific and Statistical Database Management},
  author={Lackner, Sebastian and Spitz, Andreas and Weidemüller, Matthias and Gertz, Michael},
  note={Article Number: 16}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55682">
    <dcterms:issued>2018</dcterms:issued>
    <dc:creator>Weidemüller, Matthias</dc:creator>
    <dcterms:title>Efficient anti-community detection in complex networks</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:26:35Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Modeling the relations between the components of complex systems as networks of vertices and edges is a commonly used method in many scientific disciplines that serves to obtain a deeper understanding of the systems themselves. In particular, the detection of densely connected communities in these networks is frequently used to identify functionally related components, such as social circles in networks of personal relations or interactions between agents in biological networks. Traditionally, communities are considered to have a high density of internal connections, combined with a low density of external edges between different communities. However, not all naturally occurring communities in complex networks are characterized by this notion of structural equivalence, such as groups of energy states with shared quantum numbers in networks of spectral line transitions. In this paper, we focus on this inverse task of detecting anti-communities that are characterized by an exceptionally low density of internal connections and a high density of external connections. While anti-communities have been discussed in the literature for anecdotal applications or as a modification of traditional community detection, no rigorous investigation of algorithms for the problem has been presented. To this end, we introduce and discuss a broad range of possible approaches and evaluate them with regard to efficiency and effectiveness on a range of real-world and synthetic networks. Furthermore, we show that the presence of a community and anti-community structure are not mutually exclusive, and that even networks with a strong traditional community structure may also contain anti-communities.</dcterms:abstract>
    <dc:contributor>Weidemüller, Matthias</dc:contributor>
    <dc:creator>Lackner, Sebastian</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:26:35Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55682"/>
    <dc:contributor>Lackner, Sebastian</dc:contributor>
    <dc:creator>Spitz, Andreas</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Gertz, Michael</dc:contributor>
    <dc:creator>Gertz, Michael</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen