Publikation: On nonparametric density estimation for multivariate linear long-memory processes
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Communications in Statistics : Theory and Methods. 2018, 47(22), pp. 5460-5473. ISSN 0361-0926. eISSN 1532-415X. Available under: doi: 10.1080/03610926.2017.1395048
Zusammenfassung
We consider nonparametric estimation of the density function and its derivatives for multivariate linear processes with long-range dependence. In a first step, the asymptotic distribution of the multivariate empirical process is derived. In a second step, the asymptotic distribution of kernel density estimators and their derivatives is obtained.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
kernel density estimation, linear process, multivariate, long-range dependence, multivariate time series
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BERAN, Jan, Klaus TELKMANN, 2018. On nonparametric density estimation for multivariate linear long-memory processes. In: Communications in Statistics : Theory and Methods. 2018, 47(22), pp. 5460-5473. ISSN 0361-0926. eISSN 1532-415X. Available under: doi: 10.1080/03610926.2017.1395048BibTex
@article{Beran2018-11-17nonpa-41236, year={2018}, doi={10.1080/03610926.2017.1395048}, title={On nonparametric density estimation for multivariate linear long-memory processes}, number={22}, volume={47}, issn={0361-0926}, journal={Communications in Statistics : Theory and Methods}, pages={5460--5473}, author={Beran, Jan and Telkmann, Klaus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41236"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T15:47:15Z</dcterms:available> <dcterms:title>On nonparametric density estimation for multivariate linear long-memory processes</dcterms:title> <dc:creator>Beran, Jan</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T15:47:15Z</dc:date> <dcterms:abstract xml:lang="eng">We consider nonparametric estimation of the density function and its derivatives for multivariate linear processes with long-range dependence. In a first step, the asymptotic distribution of the multivariate empirical process is derived. In a second step, the asymptotic distribution of kernel density estimators and their derivatives is obtained.</dcterms:abstract> <dc:contributor>Telkmann, Klaus</dc:contributor> <dc:creator>Telkmann, Klaus</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41236"/> <dcterms:issued>2018-11-17</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Beran, Jan</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja