Publikation: Cortical, subcortical and spinal neural correlates of slackline training-induced balance performance improvements
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Humans develop posture and balance control during childhood. Interestingly, adults can also learn to master new complex balance tasks, but the underlying neural mechanisms are not fully understood yet. Here, we combined broad scale brain connectivity fMRI at rest and spinal excitability measurements during movement. Six weeks of slackline training improved the capability to walk on a slackline which was paralleled by functional connectivity changes in brain regions associated with posture and balance control and by task-specific changes of spinal excitability. Importantly, the performance of trainees was not better than control participants in a different, untrained balance task. In conclusion, slackline training induced large-scale neuroplasticity which solely transferred into highly task specific performance improvements.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GIBOIN, Louis-Solal, Kristian LOEWE, Thomas HASSA, Andreas KRAMER, Christian DETTMERS, Stefan SPITERI, Markus GRUBER, Mircea Ariel SCHOENFELD, 2019. Cortical, subcortical and spinal neural correlates of slackline training-induced balance performance improvements. In: NeuroImage. 2019, 202, 116061. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2019.116061BibTex
@article{Giboin2019-07-30Corti-46622, year={2019}, doi={10.1016/j.neuroimage.2019.116061}, title={Cortical, subcortical and spinal neural correlates of slackline training-induced balance performance improvements}, volume={202}, issn={1053-8119}, journal={NeuroImage}, author={Giboin, Louis-Solal and Loewe, Kristian and Hassa, Thomas and Kramer, Andreas and Dettmers, Christian and Spiteri, Stefan and Gruber, Markus and Schoenfeld, Mircea Ariel}, note={Article Number: 116061} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46622"> <dc:contributor>Loewe, Kristian</dc:contributor> <dcterms:title>Cortical, subcortical and spinal neural correlates of slackline training-induced balance performance improvements</dcterms:title> <dc:contributor>Spiteri, Stefan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Gruber, Markus</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/34"/> <dc:creator>Loewe, Kristian</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46622"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T07:37:40Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:creator>Dettmers, Christian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Gruber, Markus</dc:contributor> <dc:creator>Spiteri, Stefan</dc:creator> <dc:contributor>Giboin, Louis-Solal</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T07:37:40Z</dcterms:available> <dc:contributor>Hassa, Thomas</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/34"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Schoenfeld, Mircea Ariel</dc:creator> <dc:contributor>Kramer, Andreas</dc:contributor> <dc:contributor>Dettmers, Christian</dc:contributor> <dcterms:abstract xml:lang="eng">Humans develop posture and balance control during childhood. Interestingly, adults can also learn to master new complex balance tasks, but the underlying neural mechanisms are not fully understood yet. Here, we combined broad scale brain connectivity fMRI at rest and spinal excitability measurements during movement. Six weeks of slackline training improved the capability to walk on a slackline which was paralleled by functional connectivity changes in brain regions associated with posture and balance control and by task-specific changes of spinal excitability. Importantly, the performance of trainees was not better than control participants in a different, untrained balance task. In conclusion, slackline training induced large-scale neuroplasticity which solely transferred into highly task specific performance improvements.</dcterms:abstract> <dc:creator>Giboin, Louis-Solal</dc:creator> <dc:creator>Kramer, Andreas</dc:creator> <dc:creator>Hassa, Thomas</dc:creator> <dc:contributor>Schoenfeld, Mircea Ariel</dc:contributor> <dcterms:issued>2019-07-30</dcterms:issued> </rdf:Description> </rdf:RDF>