Publikation:

Space-Time Reduced Basis Method for Solving Parameterized Heat Equations

Lade...
Vorschaubild

Dateien

Braun_2-1dsilv3ybs7810.pdf
Braun_2-1dsilv3ybs7810.pdfGröße: 2.03 MBDownloads: 76

Datum

2023

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this thesis, we present a reduced basis space-time finite element method for solving the parameterized initial boundary value heat equation. After showing the unique solvability of the underlying problem, we discretize it by using a full space-time Petrov-Galerkin finite element discretization. The space-time finite element approach uses a variational formulation in both time and space and allows for unstructured finite elements without any tensor structure. This makes the mesh more general and due to the variational treatment of space and time many solution techniques from elliptic equations can be taken over by slight modifications. In this way, we also give a parabolic version of the reduced basis method to solve the parameterized heat equation for varying parameters extremely fast (''real-time'') and very often (''multi-query''). Due to the speedup of the computational time with the reduced model the question arises how well the reduced solution approximates the finite element solution. Therefore, an a posteriori error estimator is derived to guarantee the accuracy of the reduced model. This error estimator will then be of crucial importance in the greedy algorithm for generating a reduced basis. In the numerical experiments we confirm the derived a priori error estimator between a known solution and its finite element approximation as well as the derived a posteriori error estimator between the finite element solution and the reduced basis approximation. Furthermore, we investigate the accuracy and computational complexity of the reduced basis method with a greedy generated basis. These tests show that the accuracy between reduced and finite element approximation can be chosen sufficiently well and at the same time the dimension of the reduced system is indeed much smaller than the dimension of the finite element system, which allows a faster evaluation of the solution.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Space-Time, Finite Element Method, Reduced Basis Method, Parameterized Heat Equation, Petrov-Galerkin Discretization, Parabolic Equation, A posteriori error estimation, Greedy algorithm, Least squares approach, Lebesgue Bochner spaces

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRAUN, Joschua, 2023. Space-Time Reduced Basis Method for Solving Parameterized Heat Equations [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Braun2023Space-69447,
  year={2023},
  title={Space-Time Reduced Basis Method for Solving Parameterized Heat Equations},
  address={Konstanz},
  school={Universität Konstanz},
  author={Braun, Joschua}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69447">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69447"/>
    <dc:creator>Braun, Joschua</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-04T06:46:08Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69447/4/Braun_2-1dsilv3ybs7810.pdf"/>
    <dcterms:issued>2023</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-04T06:46:08Z</dc:date>
    <dcterms:abstract>In this thesis, we present a reduced basis space-time finite element method for solving the parameterized initial boundary value heat equation. After showing the unique solvability of the underlying problem, we discretize it by using a full space-time Petrov-Galerkin finite element discretization. The space-time finite element approach uses a variational formulation in both time and space and allows for unstructured finite elements without any tensor structure. This makes the mesh more general and due to the variational treatment of space and time many solution techniques from elliptic equations can be taken over by slight modifications. In this way, we also give a parabolic version of the reduced basis method to solve the parameterized heat equation for varying parameters extremely fast (''real-time'') and very often (''multi-query''). Due to the speedup of the computational time with the reduced model the question arises how well the reduced solution approximates the finite element solution. Therefore, an a posteriori error estimator is derived to guarantee the accuracy of the reduced model. This error estimator will then be of crucial importance in the greedy algorithm for generating a reduced basis. In the numerical experiments we confirm the derived a priori error estimator between a known solution and its finite element approximation as well as the derived a posteriori error estimator between the finite element solution and the reduced basis approximation. Furthermore, we investigate the accuracy and computational complexity of the reduced basis method with a greedy generated basis. These tests show that the accuracy between reduced and finite element approximation can be chosen sufficiently well and at the same time the dimension of the reduced system is indeed much smaller than the dimension of the finite element system, which allows a faster evaluation of the solution.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Space-Time Reduced Basis Method for Solving Parameterized Heat Equations</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69447/4/Braun_2-1dsilv3ybs7810.pdf"/>
    <dc:contributor>Braun, Joschua</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2023
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen