Publikation: Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A frequent problem in applied time series analysis is the identification of dominating periodic components. A particularly difficult task is to distinguish deterministic periodic signals from periodic long memory. In this paper, a family of test statistics based on Whittle’s Gaussian log-likelihood approximation is proposed. Asymptotic critical regions and bounds for the asymptotic power are derived. In cases where a deterministic periodic signal and periodic long memory share the same frequency, consistency and rates of type II error probabilities depend on the long-memory parameter. Simulations and an application to respiratory muscle training data illustrate the results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERAN, Jan, Jeremy NÄSCHER, Fabian PIETSCH, Stephan WALTERSPACHER, 2024. Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training. In: AStA Advances in Statistical Analysis. Springer. 2024, 108(4), S. 705-731. ISSN 1863-8171. eISSN 1863-818X. Verfügbar unter: doi: 10.1007/s10182-024-00499-xBibTex
@article{Beran2024-12Testi-69846, title={Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training}, year={2024}, doi={10.1007/s10182-024-00499-x}, number={4}, volume={108}, issn={1863-8171}, journal={AStA Advances in Statistical Analysis}, pages={705--731}, author={Beran, Jan and Näscher, Jeremy and Pietsch, Fabian and Walterspacher, Stephan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69846"> <dc:contributor>Beran, Jan</dc:contributor> <dc:contributor>Näscher, Jeremy</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Beran, Jan</dc:creator> <dcterms:abstract>A frequent problem in applied time series analysis is the identification of dominating periodic components. A particularly difficult task is to distinguish deterministic periodic signals from periodic long memory. In this paper, a family of test statistics based on Whittle’s Gaussian log-likelihood approximation is proposed. Asymptotic critical regions and bounds for the asymptotic power are derived. In cases where a deterministic periodic signal and periodic long memory share the same frequency, consistency and rates of type II error probabilities depend on the long-memory parameter. Simulations and an application to respiratory muscle training data illustrate the results.</dcterms:abstract> <dc:contributor>Pietsch, Fabian</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69846/1/Beran_2-1du9dk8k54.PDF"/> <dc:creator>Pietsch, Fabian</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:title>Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training</dcterms:title> <dc:creator>Walterspacher, Stephan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-25T09:47:13Z</dcterms:available> <dc:creator>Näscher, Jeremy</dc:creator> <dc:contributor>Walterspacher, Stephan</dc:contributor> <dc:language>eng</dc:language> <dcterms:issued>2024-12</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69846"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69846/1/Beran_2-1du9dk8k54.PDF"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-25T09:47:13Z</dc:date> </rdf:Description> </rdf:RDF>