Publikation:

Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training

Lade...
Vorschaubild

Dateien

Beran_2-1du9dk8k54.PDF
Beran_2-1du9dk8k54.PDFGröße: 3.07 MBDownloads: 11

Datum

2024

Autor:innen

Pietsch, Fabian
Walterspacher, Stephan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

AStA Advances in Statistical Analysis. Springer. 2024, 108(4), S. 705-731. ISSN 1863-8171. eISSN 1863-818X. Verfügbar unter: doi: 10.1007/s10182-024-00499-x

Zusammenfassung

A frequent problem in applied time series analysis is the identification of dominating periodic components. A particularly difficult task is to distinguish deterministic periodic signals from periodic long memory. In this paper, a family of test statistics based on Whittle’s Gaussian log-likelihood approximation is proposed. Asymptotic critical regions and bounds for the asymptotic power are derived. In cases where a deterministic periodic signal and periodic long memory share the same frequency, consistency and rates of type II error probabilities depend on the long-memory parameter. Simulations and an application to respiratory muscle training data illustrate the results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
310 Statistik

Schlagwörter

Cyclic long memory, Periodicity, Deterministic periodicity, Periodogram, Gegenbauer process

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERAN, Jan, Jeremy NÄSCHER, Fabian PIETSCH, Stephan WALTERSPACHER, 2024. Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training. In: AStA Advances in Statistical Analysis. Springer. 2024, 108(4), S. 705-731. ISSN 1863-8171. eISSN 1863-818X. Verfügbar unter: doi: 10.1007/s10182-024-00499-x
BibTex
@article{Beran2024-12Testi-69846,
  title={Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training},
  year={2024},
  doi={10.1007/s10182-024-00499-x},
  number={4},
  volume={108},
  issn={1863-8171},
  journal={AStA Advances in Statistical Analysis},
  pages={705--731},
  author={Beran, Jan and Näscher, Jeremy and Pietsch, Fabian and Walterspacher, Stephan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69846">
    <dc:contributor>Beran, Jan</dc:contributor>
    <dc:contributor>Näscher, Jeremy</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Beran, Jan</dc:creator>
    <dcterms:abstract>A frequent problem in applied time series analysis is the identification of dominating periodic components. A particularly difficult task is to distinguish deterministic periodic signals from periodic long memory. In this paper, a family of test statistics based on Whittle’s Gaussian log-likelihood approximation is proposed. Asymptotic critical regions and bounds for the asymptotic power are derived. In cases where a deterministic periodic signal and periodic long memory share the same frequency, consistency and rates of type II error probabilities depend on the long-memory parameter. Simulations and an application to respiratory muscle training data illustrate the results.</dcterms:abstract>
    <dc:contributor>Pietsch, Fabian</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69846/1/Beran_2-1du9dk8k54.PDF"/>
    <dc:creator>Pietsch, Fabian</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:title>Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training</dcterms:title>
    <dc:creator>Walterspacher, Stephan</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-25T09:47:13Z</dcterms:available>
    <dc:creator>Näscher, Jeremy</dc:creator>
    <dc:contributor>Walterspacher, Stephan</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2024-12</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69846"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69846/1/Beran_2-1du9dk8k54.PDF"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-25T09:47:13Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen