Publikation: Big Data Meets Quantum Chemistry Approximations : The Δ-Machine Learning Approach
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C7H10O2 we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RAMAKRISHNAN, Raghunathan, Pavlo O. DRAL, Matthias RUPP, O. Anatole VON LILIENFELD, 2015. Big Data Meets Quantum Chemistry Approximations : The Δ-Machine Learning Approach. In: Journal of Chemical Theory and Computation. American Chemical Society (ACS). 2015, 11(5), pp. 2087-2096. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.5b00099BibTex
@article{Ramakrishnan2015-05-12Meets-52139, year={2015}, doi={10.1021/acs.jctc.5b00099}, title={Big Data Meets Quantum Chemistry Approximations : The Δ-Machine Learning Approach}, number={5}, volume={11}, issn={1549-9618}, journal={Journal of Chemical Theory and Computation}, pages={2087--2096}, author={Ramakrishnan, Raghunathan and Dral, Pavlo O. and Rupp, Matthias and von Lilienfeld, O. Anatole} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52139"> <dc:contributor>Ramakrishnan, Raghunathan</dc:contributor> <dcterms:issued>2015-05-12</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:11:23Z</dcterms:available> <dc:creator>Ramakrishnan, Raghunathan</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52139"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C<sub>7</sub>H<sub>10</sub>O<sub>2</sub> we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Big Data Meets Quantum Chemistry Approximations : The Δ-Machine Learning Approach</dcterms:title> <dc:contributor>Rupp, Matthias</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:11:23Z</dc:date> <dc:creator>Dral, Pavlo O.</dc:creator> <dc:contributor>von Lilienfeld, O. Anatole</dc:contributor> <dc:creator>Rupp, Matthias</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Dral, Pavlo O.</dc:contributor> <dc:creator>von Lilienfeld, O. Anatole</dc:creator> </rdf:Description> </rdf:RDF>