Publikation:

Big Data Meets Quantum Chemistry Approximations : The Δ-Machine Learning Approach

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Ramakrishnan, Raghunathan
Dral, Pavlo O.
von Lilienfeld, O. Anatole

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Chemical Theory and Computation. American Chemical Society (ACS). 2015, 11(5), pp. 2087-2096. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.5b00099

Zusammenfassung

Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C7H10O2 we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RAMAKRISHNAN, Raghunathan, Pavlo O. DRAL, Matthias RUPP, O. Anatole VON LILIENFELD, 2015. Big Data Meets Quantum Chemistry Approximations : The Δ-Machine Learning Approach. In: Journal of Chemical Theory and Computation. American Chemical Society (ACS). 2015, 11(5), pp. 2087-2096. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.5b00099
BibTex
@article{Ramakrishnan2015-05-12Meets-52139,
  year={2015},
  doi={10.1021/acs.jctc.5b00099},
  title={Big Data Meets Quantum Chemistry Approximations : The Δ-Machine Learning Approach},
  number={5},
  volume={11},
  issn={1549-9618},
  journal={Journal of Chemical Theory and Computation},
  pages={2087--2096},
  author={Ramakrishnan, Raghunathan and Dral, Pavlo O. and Rupp, Matthias and von Lilienfeld, O. Anatole}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52139">
    <dc:contributor>Ramakrishnan, Raghunathan</dc:contributor>
    <dcterms:issued>2015-05-12</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:11:23Z</dcterms:available>
    <dc:creator>Ramakrishnan, Raghunathan</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52139"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C&lt;sub&gt;7&lt;/sub&gt;H&lt;sub&gt;10&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Big Data Meets Quantum Chemistry Approximations : The Δ-Machine Learning Approach</dcterms:title>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:11:23Z</dc:date>
    <dc:creator>Dral, Pavlo O.</dc:creator>
    <dc:contributor>von Lilienfeld, O. Anatole</dc:contributor>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Dral, Pavlo O.</dc:contributor>
    <dc:creator>von Lilienfeld, O. Anatole</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen