Publikation: Global-to-Local Design for Self-Organized Task Allocation in Swarms
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Programming robot swarms is hard because system requirements are formulated at the swarm level (i.e., globally) while control rules need to be coded at the individual robot level (i.e., locally). Connecting global to local levels or vice versa through mathematical modeling to predict the system behavior is generally assumed to be the grand challenge of swarm robotics. We propose to approach this problem by programming directly at the swarm level. Key to this solution is the use of heterogeneous swarms that combine appropriate subsets of agents whose hard-coded agent behaviors have known global effects. Our novel global-to-local design methodology allows to compose heterogeneous swarms for the example application of self-organized task allocation. We define a large but finite number of local agent controllers and focus on the global dynamics of behaviorally heterogeneous swarms. The user inputs the desired global task allocation for the swarm as a stationary probability distribution of agents allocated over tasks. We provide a generic method that implements the desired swarm behavior by mathematically deriving appropriate compositions of heterogeneous swarms that approximate these global user requirements. We investigate our methodology over several task allocation scenarios and validate our results with multiagent simulations. The proposed global-to-local design methodology is not limited to task allocation problems and can pave the way to formal approaches to design other swarm behaviors.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
VALENTINI, Gabriele, Heiko HAMANN, Marco DORIGO, 2022. Global-to-Local Design for Self-Organized Task Allocation in Swarms. In: Intelligent Computing. AAAS, 9761694. eISSN 2771-5892. Available under: doi: 10.34133/2022/9761694BibTex
@article{Valentini2022-08-03Globa-59740, year={2022}, doi={10.34133/2022/9761694}, title={Global-to-Local Design for Self-Organized Task Allocation in Swarms}, journal={Intelligent Computing}, author={Valentini, Gabriele and Hamann, Heiko and Dorigo, Marco}, note={Article Number: 9761694} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59740"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T14:55:16Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59740/1/Valentini_2-1e1aaxf8s6rwf2.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59740"/> <dc:contributor>Hamann, Heiko</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2022-08-03</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59740/1/Valentini_2-1e1aaxf8s6rwf2.pdf"/> <dcterms:title>Global-to-Local Design for Self-Organized Task Allocation in Swarms</dcterms:title> <dc:creator>Hamann, Heiko</dc:creator> <dcterms:abstract xml:lang="eng">Programming robot swarms is hard because system requirements are formulated at the swarm level (i.e., globally) while control rules need to be coded at the individual robot level (i.e., locally). Connecting global to local levels or vice versa through mathematical modeling to predict the system behavior is generally assumed to be the grand challenge of swarm robotics. We propose to approach this problem by programming directly at the swarm level. Key to this solution is the use of heterogeneous swarms that combine appropriate subsets of agents whose hard-coded agent behaviors have known global effects. Our novel global-to-local design methodology allows to compose heterogeneous swarms for the example application of self-organized task allocation. We define a large but finite number of local agent controllers and focus on the global dynamics of behaviorally heterogeneous swarms. The user inputs the desired global task allocation for the swarm as a stationary probability distribution of agents allocated over tasks. We provide a generic method that implements the desired swarm behavior by mathematically deriving appropriate compositions of heterogeneous swarms that approximate these global user requirements. We investigate our methodology over several task allocation scenarios and validate our results with multiagent simulations. The proposed global-to-local design methodology is not limited to task allocation problems and can pave the way to formal approaches to design other swarm behaviors.</dcterms:abstract> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Dorigo, Marco</dc:contributor> <dc:creator>Dorigo, Marco</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:contributor>Valentini, Gabriele</dc:contributor> <dc:creator>Valentini, Gabriele</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T14:55:16Z</dcterms:available> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> </rdf:Description> </rdf:RDF>