Publikation:

Global-to-Local Design for Self-Organized Task Allocation in Swarms

Lade...
Vorschaubild

Dateien

Valentini_2-1e1aaxf8s6rwf2.pdf
Valentini_2-1e1aaxf8s6rwf2.pdfGröße: 579.66 KBDownloads: 45

Datum

2022

Autor:innen

Valentini, Gabriele
Dorigo, Marco

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Intelligent Computing. AAAS, 9761694. eISSN 2771-5892. Available under: doi: 10.34133/2022/9761694

Zusammenfassung

Programming robot swarms is hard because system requirements are formulated at the swarm level (i.e., globally) while control rules need to be coded at the individual robot level (i.e., locally). Connecting global to local levels or vice versa through mathematical modeling to predict the system behavior is generally assumed to be the grand challenge of swarm robotics. We propose to approach this problem by programming directly at the swarm level. Key to this solution is the use of heterogeneous swarms that combine appropriate subsets of agents whose hard-coded agent behaviors have known global effects. Our novel global-to-local design methodology allows to compose heterogeneous swarms for the example application of self-organized task allocation. We define a large but finite number of local agent controllers and focus on the global dynamics of behaviorally heterogeneous swarms. The user inputs the desired global task allocation for the swarm as a stationary probability distribution of agents allocated over tasks. We provide a generic method that implements the desired swarm behavior by mathematically deriving appropriate compositions of heterogeneous swarms that approximate these global user requirements. We investigate our methodology over several task allocation scenarios and validate our results with multiagent simulations. The proposed global-to-local design methodology is not limited to task allocation problems and can pave the way to formal approaches to design other swarm behaviors.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690VALENTINI, Gabriele, Heiko HAMANN, Marco DORIGO, 2022. Global-to-Local Design for Self-Organized Task Allocation in Swarms. In: Intelligent Computing. AAAS, 9761694. eISSN 2771-5892. Available under: doi: 10.34133/2022/9761694
BibTex
@article{Valentini2022-08-03Globa-59740,
  year={2022},
  doi={10.34133/2022/9761694},
  title={Global-to-Local Design for Self-Organized Task Allocation in Swarms},
  journal={Intelligent Computing},
  author={Valentini, Gabriele and Hamann, Heiko and Dorigo, Marco},
  note={Article Number: 9761694}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59740">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T14:55:16Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59740/1/Valentini_2-1e1aaxf8s6rwf2.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59740"/>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2022-08-03</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59740/1/Valentini_2-1e1aaxf8s6rwf2.pdf"/>
    <dcterms:title>Global-to-Local Design for Self-Organized Task Allocation in Swarms</dcterms:title>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:abstract xml:lang="eng">Programming robot swarms is hard because system requirements are formulated at the swarm level (i.e., globally) while control rules need to be coded at the individual robot level (i.e., locally). Connecting global to local levels or vice versa through mathematical modeling to predict the system behavior is generally assumed to be the grand challenge of swarm robotics. We propose to approach this problem by programming directly at the swarm level. Key to this solution is the use of heterogeneous swarms that combine appropriate subsets of agents whose hard-coded agent behaviors have known global effects. Our novel global-to-local design methodology allows to compose heterogeneous swarms for the example application of self-organized task allocation. We define a large but finite number of local agent controllers and focus on the global dynamics of behaviorally heterogeneous swarms. The user inputs the desired global task allocation for the swarm as a stationary probability distribution of agents allocated over tasks. We provide a generic method that implements the desired swarm behavior by mathematically deriving appropriate compositions of heterogeneous swarms that approximate these global user requirements. We investigate our methodology over several task allocation scenarios and validate our results with multiagent simulations. The proposed global-to-local design methodology is not limited to task allocation problems and can pave the way to formal approaches to design other swarm behaviors.</dcterms:abstract>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Dorigo, Marco</dc:contributor>
    <dc:creator>Dorigo, Marco</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Valentini, Gabriele</dc:contributor>
    <dc:creator>Valentini, Gabriele</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T14:55:16Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen