Publikation:

Applying visual analytics to explore and analyze movement data

Lade...
Vorschaubild

Dateien

Cakmak_2-1e4h27rpg1np39.pdf
Cakmak_2-1e4h27rpg1np39.pdfGröße: 313.18 KBDownloads: 372

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CHEN, Min, ed. and others. 2015 IEEE Conference on Visual Analytics Science and Technology : Proceedings : Chicago, Illinois, USA, 25-30 October 2015. Piscataway, NJ: IEEE, 2015, pp. 127-128. ISBN 978-1-4673-9783-4. Available under: doi: 10.1109/VAST.2015.7347643

Zusammenfassung

The VAST Challenge 2015 movement dataset is mirroring current challenges in the analysis of large spatiotemporal datasets. We present a tool featuring different exploratory approaches analyze and visualize spatiotemporal data to build and confirm hypotheses. Our tool helps the user to find patterns, anomalies and groups in a data set that can not be processed manually. We present custom visualizations to solve the tasks stated by the VAST 2015 Mini-Challenge (MC1).

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE Conference on Visual Analytics Science and Technology (VAST), 25. Okt. 2015 - 30. Okt. 2015, Chicago, IL, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CAKMAK, Eren, Alexander GÄRTNER, Thomas HEPP, Juri F. BUCHMÜLLER, Fabian FISCHER, Daniel A. KEIM, 2015. Applying visual analytics to explore and analyze movement data. IEEE Conference on Visual Analytics Science and Technology (VAST). Chicago, IL, USA, 25. Okt. 2015 - 30. Okt. 2015. In: CHEN, Min, ed. and others. 2015 IEEE Conference on Visual Analytics Science and Technology : Proceedings : Chicago, Illinois, USA, 25-30 October 2015. Piscataway, NJ: IEEE, 2015, pp. 127-128. ISBN 978-1-4673-9783-4. Available under: doi: 10.1109/VAST.2015.7347643
BibTex
@inproceedings{Cakmak2015-10Apply-33497,
  year={2015},
  doi={10.1109/VAST.2015.7347643},
  title={Applying visual analytics to explore and analyze movement data},
  isbn={978-1-4673-9783-4},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2015 IEEE Conference on Visual Analytics Science and Technology : Proceedings : Chicago, Illinois, USA, 25-30 October 2015},
  pages={127--128},
  editor={Chen, Min},
  author={Cakmak, Eren and Gärtner, Alexander and Hepp, Thomas and Buchmüller, Juri F. and Fischer, Fabian and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33497">
    <dc:contributor>Fischer, Fabian</dc:contributor>
    <dc:creator>Gärtner, Alexander</dc:creator>
    <dcterms:title>Applying visual analytics to explore and analyze movement data</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T12:09:57Z</dcterms:available>
    <dc:contributor>Hepp, Thomas</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33497/1/Cakmak_2-1e4h27rpg1np39.pdf"/>
    <dc:creator>Fischer, Fabian</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33497/1/Cakmak_2-1e4h27rpg1np39.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T12:09:57Z</dc:date>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Gärtner, Alexander</dc:contributor>
    <dc:contributor>Buchmüller, Juri F.</dc:contributor>
    <dcterms:abstract xml:lang="eng">The VAST Challenge 2015 movement dataset is mirroring current challenges in the analysis of large spatiotemporal datasets. We present a tool featuring different exploratory approaches analyze and visualize spatiotemporal data to build and confirm hypotheses. Our tool helps the user to find patterns, anomalies and groups in a data set that can not be processed manually. We present custom visualizations to solve the tasks stated by the VAST 2015 Mini-Challenge (MC1).</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Hepp, Thomas</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33497"/>
    <dcterms:issued>2015-10</dcterms:issued>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <dc:creator>Buchmüller, Juri F.</dc:creator>
    <dc:creator>Cakmak, Eren</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen