Publikation: Applying visual analytics to explore and analyze movement data
Lade...
Dateien
Datum
2015
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
CHEN, Min, ed. and others. 2015 IEEE Conference on Visual Analytics Science and Technology : Proceedings : Chicago, Illinois, USA, 25-30 October 2015. Piscataway, NJ: IEEE, 2015, pp. 127-128. ISBN 978-1-4673-9783-4. Available under: doi: 10.1109/VAST.2015.7347643
Zusammenfassung
The VAST Challenge 2015 movement dataset is mirroring current challenges in the analysis of large spatiotemporal datasets. We present a tool featuring different exploratory approaches analyze and visualize spatiotemporal data to build and confirm hypotheses. Our tool helps the user to find patterns, anomalies and groups in a data set that can not be processed manually. We present custom visualizations to solve the tasks stated by the VAST 2015 Mini-Challenge (MC1).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IEEE Conference on Visual Analytics Science and Technology (VAST), 25. Okt. 2015 - 30. Okt. 2015, Chicago, IL, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
CAKMAK, Eren, Alexander GÄRTNER, Thomas HEPP, Juri F. BUCHMÜLLER, Fabian FISCHER, Daniel A. KEIM, 2015. Applying visual analytics to explore and analyze movement data. IEEE Conference on Visual Analytics Science and Technology (VAST). Chicago, IL, USA, 25. Okt. 2015 - 30. Okt. 2015. In: CHEN, Min, ed. and others. 2015 IEEE Conference on Visual Analytics Science and Technology : Proceedings : Chicago, Illinois, USA, 25-30 October 2015. Piscataway, NJ: IEEE, 2015, pp. 127-128. ISBN 978-1-4673-9783-4. Available under: doi: 10.1109/VAST.2015.7347643BibTex
@inproceedings{Cakmak2015-10Apply-33497, year={2015}, doi={10.1109/VAST.2015.7347643}, title={Applying visual analytics to explore and analyze movement data}, isbn={978-1-4673-9783-4}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2015 IEEE Conference on Visual Analytics Science and Technology : Proceedings : Chicago, Illinois, USA, 25-30 October 2015}, pages={127--128}, editor={Chen, Min}, author={Cakmak, Eren and Gärtner, Alexander and Hepp, Thomas and Buchmüller, Juri F. and Fischer, Fabian and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33497"> <dc:contributor>Fischer, Fabian</dc:contributor> <dc:creator>Gärtner, Alexander</dc:creator> <dcterms:title>Applying visual analytics to explore and analyze movement data</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T12:09:57Z</dcterms:available> <dc:contributor>Hepp, Thomas</dc:contributor> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33497/1/Cakmak_2-1e4h27rpg1np39.pdf"/> <dc:creator>Fischer, Fabian</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33497/1/Cakmak_2-1e4h27rpg1np39.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T12:09:57Z</dc:date> <dc:contributor>Keim, Daniel A.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Gärtner, Alexander</dc:contributor> <dc:contributor>Buchmüller, Juri F.</dc:contributor> <dcterms:abstract xml:lang="eng">The VAST Challenge 2015 movement dataset is mirroring current challenges in the analysis of large spatiotemporal datasets. We present a tool featuring different exploratory approaches analyze and visualize spatiotemporal data to build and confirm hypotheses. Our tool helps the user to find patterns, anomalies and groups in a data set that can not be processed manually. We present custom visualizations to solve the tasks stated by the VAST 2015 Mini-Challenge (MC1).</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dc:creator>Hepp, Thomas</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33497"/> <dcterms:issued>2015-10</dcterms:issued> <dc:contributor>Cakmak, Eren</dc:contributor> <dc:creator>Buchmüller, Juri F.</dc:creator> <dc:creator>Cakmak, Eren</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja