Publikation: Stability of hyperbolic space under Ricci flow
Lade...
Dateien
Datum
2010
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
We study the Ricci flow of initial metrics which are C^0-perturbations of the hyperbolic metric on H^n. If the perturbation is bounded in the L^2-sense, and small enough in the C^0-sense, then we show the following: In dimensions four and higher, the scaled Ricci harmonic map heat flow of such a metric converges smoothly, uniformly and exponentially fast in all C^k-norms and in the L^2-norm to the hyperbolic metric as time approaches infinity. We also prove a related result for the Ricci flow and for the two-dimensional conformal Ricci flow.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Ricci flow, stability, hyperbolic space
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SCHNÜRER, Oliver C., Felix SCHULZE, Miles SIMON, 2010. Stability of hyperbolic space under Ricci flowBibTex
@techreport{Schnurer2010Stabi-755, year={2010}, series={Konstanzer Schriften in Mathematik}, title={Stability of hyperbolic space under Ricci flow}, number={270}, author={Schnürer, Oliver C. and Schulze, Felix and Simon, Miles} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/755"> <dc:contributor>Simon, Miles</dc:contributor> <dc:creator>Simon, Miles</dc:creator> <dc:creator>Schulze, Felix</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/755/1/270.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/755"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:45Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/755/1/270.pdf"/> <dcterms:issued>2010</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Schnürer, Oliver C.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:45Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:format>application/pdf</dc:format> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schulze, Felix</dc:contributor> <dc:creator>Schnürer, Oliver C.</dc:creator> <dcterms:title>Stability of hyperbolic space under Ricci flow</dcterms:title> <dcterms:abstract xml:lang="eng">We study the Ricci flow of initial metrics which are C^0-perturbations of the hyperbolic metric on H^n. If the perturbation is bounded in the L^2-sense, and small enough in the C^0-sense, then we show the following: In dimensions four and higher, the scaled Ricci harmonic map heat flow of such a metric converges smoothly, uniformly and exponentially fast in all C^k-norms and in the L^2-norm to the hyperbolic metric as time approaches infinity. We also prove a related result for the Ricci flow and for the two-dimensional conformal Ricci flow.</dcterms:abstract> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja