Publikation:

Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Kunisch, Karl

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Optimization Theory and Applications. Springer. 2020, 185(3), pp. 819-844. ISSN 0022-3239. eISSN 1573-2878. Available under: doi: 10.1007/s10957-020-01677-y

Zusammenfassung

The Barzilai and Borwein gradient method has received a significant amount of attention in different fields of optimization. This is due to its simplicity, computational cheapness, and efficiency in practice. In this research, based on spectral analysis techniques, root-linear global convergence for the Barzilai and Borwein method is proven for strictly convex quadratic problems posed in infinite-dimensional Hilbert spaces. The applicability of these results is demonstrated for two optimization problems governed by partial differential equations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Barzilai–Borwein method, Hilbert spaces, R-Linear rate of convergence, PDE-constrained optimization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AZMI, Behzad, Karl KUNISCH, 2020. Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces. In: Journal of Optimization Theory and Applications. Springer. 2020, 185(3), pp. 819-844. ISSN 0022-3239. eISSN 1573-2878. Available under: doi: 10.1007/s10957-020-01677-y
BibTex
@article{Azmi2020Analy-56297,
  year={2020},
  doi={10.1007/s10957-020-01677-y},
  title={Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces},
  number={3},
  volume={185},
  issn={0022-3239},
  journal={Journal of Optimization Theory and Applications},
  pages={819--844},
  author={Azmi, Behzad and Kunisch, Karl}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56297">
    <dc:contributor>Azmi, Behzad</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Azmi, Behzad</dc:creator>
    <dc:creator>Kunisch, Karl</dc:creator>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-21T12:27:19Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56297"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-21T12:27:19Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">The Barzilai and Borwein gradient method has received a significant amount of attention in different fields of optimization. This is due to its simplicity, computational cheapness, and efficiency in practice. In this research, based on spectral analysis techniques, root-linear global convergence for the Barzilai and Borwein method is proven for strictly convex quadratic problems posed in infinite-dimensional Hilbert spaces. The applicability of these results is demonstrated for two optimization problems governed by partial differential equations.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces</dcterms:title>
    <dc:contributor>Kunisch, Karl</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen