Publikation: Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Autor:innen
Kunisch, Karl
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Optimization Theory and Applications. Springer. 2020, 185(3), pp. 819-844. ISSN 0022-3239. eISSN 1573-2878. Available under: doi: 10.1007/s10957-020-01677-y
Zusammenfassung
The Barzilai and Borwein gradient method has received a significant amount of attention in different fields of optimization. This is due to its simplicity, computational cheapness, and efficiency in practice. In this research, based on spectral analysis techniques, root-linear global convergence for the Barzilai and Borwein method is proven for strictly convex quadratic problems posed in infinite-dimensional Hilbert spaces. The applicability of these results is demonstrated for two optimization problems governed by partial differential equations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Barzilai–Borwein method, Hilbert spaces, R-Linear rate of convergence, PDE-constrained optimization
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
AZMI, Behzad, Karl KUNISCH, 2020. Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces. In: Journal of Optimization Theory and Applications. Springer. 2020, 185(3), pp. 819-844. ISSN 0022-3239. eISSN 1573-2878. Available under: doi: 10.1007/s10957-020-01677-yBibTex
@article{Azmi2020Analy-56297, year={2020}, doi={10.1007/s10957-020-01677-y}, title={Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces}, number={3}, volume={185}, issn={0022-3239}, journal={Journal of Optimization Theory and Applications}, pages={819--844}, author={Azmi, Behzad and Kunisch, Karl} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56297"> <dc:contributor>Azmi, Behzad</dc:contributor> <dcterms:issued>2020</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Azmi, Behzad</dc:creator> <dc:creator>Kunisch, Karl</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-21T12:27:19Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56297"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-21T12:27:19Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">The Barzilai and Borwein gradient method has received a significant amount of attention in different fields of optimization. This is due to its simplicity, computational cheapness, and efficiency in practice. In this research, based on spectral analysis techniques, root-linear global convergence for the Barzilai and Borwein method is proven for strictly convex quadratic problems posed in infinite-dimensional Hilbert spaces. The applicability of these results is demonstrated for two optimization problems governed by partial differential equations.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces</dcterms:title> <dc:contributor>Kunisch, Karl</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja