Publikation:

On the rank of abelian varieties over ample fields

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Petersen, Sebastian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Number Theory. 2010, 06(03), pp. 579-586. ISSN 1793-0421. Available under: doi: 10.1142/S1793042110003071

Zusammenfassung

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Abelian variety, infinite rank, ample field

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FEHM, Arno, Sebastian PETERSEN, 2010. On the rank of abelian varieties over ample fields. In: International Journal of Number Theory. 2010, 06(03), pp. 579-586. ISSN 1793-0421. Available under: doi: 10.1142/S1793042110003071
BibTex
@article{Fehm2010abeli-12746,
  year={2010},
  doi={10.1142/S1793042110003071},
  title={On the rank of abelian varieties over ample fields},
  number={03},
  volume={06},
  issn={1793-0421},
  journal={International Journal of Number Theory},
  pages={579--586},
  author={Fehm, Arno and Petersen, Sebastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12746">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-08-15T09:52:20Z</dc:date>
    <dc:creator>Fehm, Arno</dc:creator>
    <dc:creator>Petersen, Sebastian</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Petersen, Sebastian</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: International Journal of Number Theory 6 (2010), 3, pp. 579-586</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12746"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:title>On the rank of abelian varieties over ample fields</dcterms:title>
    <dc:contributor>Fehm, Arno</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-08-15T09:52:20Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen