Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes

Lade...
Vorschaubild
Dateien
Barsoum_261634.pdf
Barsoum_261634.pdfGröße: 1.06 MBDownloads: 789
Datum
2013
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 237984
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

For modelling mixed-frequency data with business cycle pattern we introduce the Markovswitching Mixed Data Sampling model with unrestricted lag polynomial (MS-U-MIDAS). Usually models of the MIDAS-class use lag polynomials of a specific function, which impose some structure on the weights of regressors included in the model. This may deteriorate the predictive power of the model if the imposed structure differs from the data generating process. When the difference between the available data frequencies is small and there is no risk of parameter proliferation, using an unrestricted lag polynomial might not only simplify the model estimation, but also improve its forecasting performance. We allow the parameters of the MIDAS model with unrestricted lag polynomial to change according to a Markov-switching scheme in order to account for the business cycle pattern observed in many macroeconomic variables. Thus we combine the unrestricted MIDAS with a Markov-switching approach and propose a new Markov-switching MIDAS model with unrestricted lag polynomial (MS-U-MIDAS). We apply this model to a large dataset with the help of factor analysis. Monte Carlo experiments and an empirical forecasting comparison carried out for the U.S. GDP growth show that the models of the MS-UMIDAS class exhibit similar or better nowcasting and forecasting performance than their counterparts with restricted lag polynomials.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BARSOUM, Fady, Sandra STANKIEWICZ, 2013. Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes
BibTex
@techreport{Barsoum2013Forec-26163,
  year={2013},
  series={Working Paper Series / Department of Economics},
  title={Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes},
  number={2013-10},
  author={Barsoum, Fady and Stankiewicz, Sandra}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26163">
    <dc:language>eng</dc:language>
    <dc:contributor>Stankiewicz, Sandra</dc:contributor>
    <dcterms:title>Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes</dcterms:title>
    <dc:contributor>Barsoum, Fady</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-03T06:49:02Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26163"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26163/1/Barsoum_261634.pdf"/>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-03T06:49:02Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:abstract xml:lang="eng">For modelling mixed-frequency data with business cycle pattern we introduce the Markovswitching Mixed Data Sampling model with unrestricted lag polynomial (MS-U-MIDAS). Usually models of the MIDAS-class use lag polynomials of a specific function, which impose some structure on the weights of regressors included in the model. This may deteriorate the predictive power of the model if the imposed structure differs from the data generating process. When the difference between the available data frequencies is small and there is no risk of parameter proliferation, using an unrestricted lag polynomial might not only simplify the model estimation, but also improve its forecasting performance. We allow the parameters of the MIDAS model with unrestricted lag polynomial to change according to a Markov-switching scheme in order to account for the business cycle pattern observed in many macroeconomic variables. Thus we combine the unrestricted MIDAS with a Markov-switching approach and propose a new Markov-switching MIDAS model with unrestricted lag polynomial (MS-U-MIDAS). We apply this model to a large dataset with the help of factor analysis. Monte Carlo experiments and an empirical forecasting comparison carried out for the U.S. GDP growth show that the models of the MS-UMIDAS class exhibit similar or better nowcasting and forecasting performance than their counterparts with restricted lag polynomials.</dcterms:abstract>
    <dc:creator>Stankiewicz, Sandra</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Barsoum, Fady</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26163/1/Barsoum_261634.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen